• Title/Summary/Keyword: Transport temperature

Search Result 1,512, Processing Time 0.03 seconds

An Experimental Study on the Heat Transfer Characteristics in Miniature Heat Pipes with Screen Wick (스크린 윅을 삽입한 소형 히트파이프에서 열전달 특성에 관한 실험적 연구)

  • Park, K.H.;Lee, K.W.;Ko, Y.K.;Lee, K.J.;Chun, W.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.572-578
    • /
    • 2001
  • This study is to research the heat transfer characteristics in copper-water heat pipes with screen wick, #100. Recently, the semiconductor capacity of an electronic unit has been larger, on the contrary, its size is smaller than before. As a result, a high-performance cooling system is needed. Experimental variables are inclination angle and temperature of cooling water. The distilled water was used for the working fluid. At a inclination angle ${-6}^{\circ}$, #100 2layer screen mesh is shown the best heat transfer performance.

  • PDF

Enterobacter cloacae MG82에 의한Triphenylmethane흡수 특성과 탈색효소의 세포내 위치

  • Jeong, Min-Seon;Kwak, Soon-Jun;Kim, Byung-Hong;Chung, Young-Gun;Kang, Sa-Ouk;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Triphenylmethane was decolorized rapidly by enterbacter cloacae MG 82 at initial reaction time. The spheroplast showed higher activity of triphenylmentane decolorization than that of intact cell suspension. The outer part of the bacterial cell envelope and the peptidoglycan are important for the function of transport barrier of triphenylmethane. In intact cell, decolorization activity was higher at 37$\circ $C than at $\circ $C, indicating that triphenylmethane decolorization is due to the enzyme reaction. Culture filtrate showed no decolorization activity, while cell-free extract appeared high activity of 1.45 units, clearly showing that decolorization activity was due to the cell-free extract. Comparing decolorization activities of cell fractions, it was found that decolorization activity was located at the compartment of cytoplasmic membrane. The enzyme activity was also shown to be Mg$^{++}$-dependent. The optimum pH and temperature of enzyme activity were 7.0 and 50$\circ $C, respectively. The thermostability of this enzyme at 35$\circ $C was kept to 58% for 3 hours.

  • PDF

Analysis of Fuel Droplet Vaporization at High-Pressure Environment (고압상태에서의 연료액적의 증발특성 해석)

  • Lee, J.C.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A vaporization model for single component fuel droplet has been developed for applying to sub- and supercritical conditions. This model can account for transient liquid heat ins and circulation effect inside the droplet, forced and natural convection, Stefan flow effect, real gas effect and ambient gas solubility into the liquid droplet in high-pressure conditions. Thermodynamic and transport properties are calculated as functions of temperature and pressure in both phases. Numerical calculations are carried out for several validation cases with the detailed experimental data. Numerical results confirm that this supercritical vaporization model is applicable to the high-pressure conditions encountered in the combustion processes of diesel engine.

  • PDF

The Phse Stability and the Electrical Properties of $3Bi_2O_3.WO_3$ Solid Electrolyte ($3Bi_2O_3.WO_3$ 고체전해질의 상안정성과 전기적 특성)

  • 백현덕;이윤직;박종욱
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.248-256
    • /
    • 1995
  • The electrical conducton in the sintered 3Bi2O3.WO3 solid electrolyte was investigated by measuring the conductivity and ionic transport number. The electrical conductivity was about three to ten times higher than that of YSZ at temperatures between 300 and 80$0^{\circ}C$. D.C. polarization method confirmed that 3Bi2O3.WO3 was predominantly an ionic conductor. Unlike the instability of high conductive fcc phase in the rare-earth oxide-Bi2O3 or Y2O3-Bi2O3 systems at temperature below $700^{\circ}C$, fcc phase in the 3Bi2O3.WO3 exhibited no transformation even after annealing over 900 hrs at 600 and $650^{\circ}C$. Two samples which had different grain sizes showed almost the same conductivity. This result suggests that the electrical properties of grain and grain boundry were very similar.

  • PDF

Effect of V2O5 Addition on the Microstructure and Electrical Properties of Pb(In1/2Nb1/2)O3-PbTiO3 Ceramics (Pb(In1/2Nb1/2)O3-PbTiO3계의 미세구조와 전기적 물성에 미치는 V2O5 첨가의 영향)

  • 박현욱;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.335-340
    • /
    • 1988
  • The change in microstructure and the electrical properties of Pb(In1/2Nb1/2)O3-PbTiO3 Ceramics caused by V2O5 addition were studied. The results are ; 1. interability was increased because the mass transport through the second phase formed by V2O5 addition increased. 2. ith addition of V2O5, tetragonality and Curie temperature increased. The maximum value of kp was observed when 0.5wt% of V2O5 was added. 3. he second phase formed by V2O5 accelerated the grain growth, and existed in grain boundary. Electrical properties were changed by corelations between tetragonality and the amount of second phase.

  • PDF

Development of a Thermal Analysis Program for a Regenerative Cooling Passage of Liquid Rocket and Simulation of Turbulent Heat Transfer (액체로켓의 재생냉각채널에 대한 열해석 프로그램의 개발 및 난류열유동 해석)

  • Park T. S
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.56-65
    • /
    • 2003
  • A numerical procedure for analyzing the heat transfer in a regenerative cooling passage of liquid rocket has been developed. The thermal analysis is based on the numerical model of Naraghi〔1〕. The thermodynamic and transport properties of the combustion gases are evaluated using the chemical equilibrium composition. The pressure and heat flux obtained by the isentropic relation are in good agreement with the result of Navier-Stokes equations. The effect of design parameters on heat transfer is addressed for the pressure loss and temperature variation. Also, their constraints in designing the cooling passage are recommended. Finally, in a heated rectangular duct, the effects of secondary flow on heat transfer are scrutinized by the nonlinear k- e -fu of Park et at.〔2〕.

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

THERMAL ANALYSIS OF SURFACE HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (외장형 HEAT PIPE 가 장착된 정지궤도 위성 패널의 열해석)

  • Jun H.Y.;Kim J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.8-13
    • /
    • 2006
  • The north panel of a geostationary satellite is used as one of the main radiators, on which communication equipment or bus equipment are installed. The thermal control of panel is designed by using embedded heat pipes and surface heat pipes (or external heat pipes) to spread out heat dissipated from equipment all over the radiator evenly and finally to reject the heat to the space through the radiator efficiently. This panel is also divided by several areas based on the operating temperature and dissipation of equipment in order to increase heat rejection capability of radiator. The thermal analysis is carried out for the hot case, Winter Solsitce EOL (End Of Life), in order to validate thermal design of the panel utilized 6 surface heat pipes and 8 embedded heat pipes. The sensitivity studies for the heat pipe failure case and no heat pipe case are performed and compared to its normal state. The heat transport capability of heat pipe is also obtained from these calculations.

Mass and Heat Transfer Characteristics of Vertical Flat Plate with Free Convection

  • Kim Myoung- Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.729-735
    • /
    • 2005
  • This paper has dealt with the characteristics of mass and heat transfer of vertical flat plate with free convection. The theory of similarity transformations applied to the momentum and energy equations for free convection. To derive the similarity equation of mass transfer. the equation for conservation of species was added to the continuity. momentum and energy equations. The momentum, energy and species equations set numerically to obtain the velocity, temperature and mass fraction of species as dimensionless. For cases where momentum transport dominates, the thermal boundary layers are shorter than the momentum boundary layer. The relationships between momentum, energy and species were clarified from this study.

Combined Convection and Radiation in a Tube with Circumferential Fins and Circular Disks

  • Kim, Namjin;Lee, Jaeyong;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1725-1732
    • /
    • 2002
  • Combined convection and radiation heat transfer in a circular tube with circumferential fins and circular disks is investigated for various operating conditions. Using a finite volume technique for steady laminar flow, the governing equations are solved in order to study the flow and temperature fields. The P- 1 approximation and the weighted sum of gray gases model (WSGGM) are used for solving the radiation transport equation. The results show that the total Nusselt number of combined convection and radiation is higher than that of pure convection. If the temperatures of the combustion gas and the wall in a tube are high, radiation becomes dominant. Therefore, it is necessary to evaluate the effect of radiation on the total heat transfer.