• Title/Summary/Keyword: Transport temperature

Search Result 1,512, Processing Time 0.026 seconds

Deposition of Epitaxial YBCO Films on $LaAlO_3$(100) Substrate by Spray Pyrolysis Method (분사 열분해 CVD법에서 분사방식에 따른 YBCO 박막의 결정구조와 미세조직 연구)

  • Kim Ho-Jin;Joo Jinho;Hong Suk-Kwan;Lee Sun-Wang;Lim Sun-Weon;Lee Hee-Gyoun;Hong Gye-Won
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • [ $YBa_{2}Cu_{3}O_y$ ] superconducting films were prepared on $LaAlO_3$(100) single crystal substrate by spray pyrolysis method. The precursor solution was prepared by dissolving nitrate powders in de-ionized water. Both of ultrasonic and concentric nebulizers were used in order to generate fine droplets of precursor solution. C-axis oriented films were obtained at deposition temperature of $750\~850^{\circ}C$ and working pressure of 100 Torr and 500 Torr. In case of ultrasonic nebulizer, films showed rough and porous surface morphology due to formation of enormous droplets, while smooth and dense films were obtained for concentric nebulizer. A transport $J_c$ value of $0.43\;MA/cm^2$ at 77 K and self field was achieved on $LaAlO_3$(100) single crystal substrate.

  • PDF

Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration (이산화탄소 해양격리 심해주입시스템의 초기설계)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

Internal Flow Analysis for a 10 inch Ball Valve using Flow Similarity (유동상사를 이용한 10인치 볼밸브 내부유동 분석)

  • LEE, SANG-MOON;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2015
  • Flow characteristics inside a 10 inch ball valve have been analyzed using three-dimensional numerical analysis and experiments. Continuity and three-dimensional Reynolds-averaged Navier-Stokes equations have been used as governing equations for the numerical analysis. The numerical model has been constructed through the grid dependency test and validation with the results of experiments to ensure reliability and numerical effectiveness. The shear stress transport (SST) model has been used as the turbulence closure. The experimental test-rig has been constructed to measure pressure, temperature and flow rate along the pipeline. Some valve opening angles have been tested to evaluate the flow characteristics inside the ball valve and pipeline. The results show that the rapid pressure variations is observed while the valve opening angle decreases, which caused by flow separation at the downstream of the ball valve.

Photosynthetic Characteristics of Intact Cells and Thylakoid Membranes of Synechococcus PCC7002 with Polyvinyalcohol-Immobilization (Synechococcus PCC7002의 세포 및 틸라코이드 막의 Polyvinylalcohol 고정화에 의한 광합성 특성)

  • 윤지은;전현식
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.185-191
    • /
    • 1993
  • Highly stable $O_2$-evolving cells and thylakoid membranes have been obtained from the cyanobacterium, Synechococcus PCC7002, by immobilization with polyvinylalcohol(PVA). The absorption peak showed the blue-shift of about 3 nm after immobilization of intact cells and thylakoid membranes as well as isolation of thylakoid membranes. Photosynthetic electron transport activities, especially PS II activity showed greater stability in the PVA-immobilized cells and thylakoid membranes when stored at $4^{\circ}C$ than in those at $25^{\circ}C$. When the cells were threated at higher temperature, the level of Fo and Fv increased. After imobilization, however, Fo showed no change. This suggests that the immobilization can protect against the damages of PS II complex, especially a water-spiliting system, by heat treatment.

  • PDF

Development of a remote monitoring system for gas detection at the subway station (지하철 역내 가스 검출 원격 모니터링 시스템 구현)

  • Park, Yong-Man;Kim, Hei-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.439-441
    • /
    • 2007
  • The seoul metropolitan subway has installed 8 lines and about 500 stations to transport 5 million passengers everyday. The underground air pollution level in the subway stations is very severe status, which is very harmful to the commutators and its personals. Although subway roles as such a massive and huge transportation system, the subway doesn't adapt yet any real-time air monitoring system. They have only some hand-held type detector equipments for monitoring air pollution. Therefore subway passengers are exposed to the harmful air pollution environment. The most harmful environmental parameters among the air pollution are known as the dust and sound noise dB level in the subway station. Because the dust is consisted of very small particles, we can't see them easily in dark condition on the platform, but it is very harmful. The monitoring system for air pollution is developed using embedded system attached with 6 different environmental sensors. This system monitors air pollution of dust sound noise, gas, temperature, humidity, inflammable gas, toxic gas in the subway ?station. The sensor unit of the ARM-CPU board and sensor transmits real time environmental data to the main server using Zigbee wireless communication module and TCP/IP network. The main control server receives and displays the real-time environmental data, and it send alarms to the personals when high level value.

  • PDF

Numerical Simulation on the ULPU-V Experiments using RPI Model (RPI모형을 이용한 ULPU-V시험의 수치모사)

  • Suh, Jungsoo;Ha, Huiun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • The external reactor vessel cooling (ERVC) is well known strategy to mitigate a severe accident at which nuclear fuel inside the reactor vessel is molten. In order to compare the heat removal capacity of ERVC between the nuclear reactor designs quantitatively, numerical method is often used. However, the study for ERVC using computational fluid dynamics (CFD) is still quite scarce. As a validation study on the numerical prediction for ERVC using CFD, the subcooled boiling flow and natural circulation of coolant at the ULPU-V experiment was simulated. The commercially available CFD software ANSYS-CFX was used. Shear stress transport (SST) model and RPI model were used for turbulence closure and wall-boiling, respectively. The averaged flow velocities in the downcomer and the baffle entry under the reactor vessel lower plenum are in good agreement with the available experimental data and recent computational results. Steam generated from the heated wall condenses rapidly and coolant flows maintains single-phase flow until coolant boils again by flashing process due to the decrease of saturation temperature induced by higher elevation. Hence, the flow rate of coolant natural circulation does not vary significantly with the change of heat flux applied at the reactor vessel, which is also consistent with the previous literatures.

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.

Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic

  • Mahto, Uttam K.;Roy, Sumit K.;Chaudhuri, S.;Prasad, K.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.181-192
    • /
    • 2016
  • In this work effect of high energy milling on the structural and electrical properties of $Ba(Fe_{1/2}Ta_{1/2})O_3$ (BFT) ceramic synthesized using standard solid-state reaction method were investigated. X-ray diffraction studies indicated that the unit cell structure for all the samples to be hexagonal (space group: P3m1). FTIR spectra also confirmed the formation of BFT without any new phase. The milled (10 h) BFT ceramic showed the formation of small grain sizes (<$2{\mu}m$) which is beneficial for dielectric applications in high density integrated devices. Besides, the milled (10 h) BFT ceramic sample exhibited superior dielectric properties (enhancement in ${\varepsilon}^{\prime}-value$ and reduction in $tg{\delta}-value$) compared to un-milled one. Impedance analysis indicated the negative temperature coefficient of resistance (NTCR) character. The correlated barrier hopping model (jump relaxation type) is found to successfully explain the mechanism of charge transport in present ceramic samples.

Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization (주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구)

  • ;Park, Jung Kyu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.

Experimental and Numerical Analysis of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량 유량계 센서관에서의 열전달 현상에 대한 수치적 해석 및 실험적 연구)

  • Jang, Seok-Pil;Kim, Sung-Jin;Choi, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.154-161
    • /
    • 2000
  • As a mass flow controller is widely used in many manufacturing processes for controlling a mass flow rate of gas with accuracy of 1%, several investigators have tried to describe the heat transfer phenomena in a sensor tube of an MFC. They suggested a few analytic solutions and numerical models based on simple assumptions, which are physically unrealistic. In the present work, the heat transfer phenomena in the sensor tube of the MFC are studied by using both experimental and numerical methods. The numerical model is introduced to estimate the temperature profile in the sensor tube as well as in the gas stream. In the numerical model, the conjugate heat transfer problem comprising the tube wall and the gas stream is analyzed to fully understand the heat transfer interaction between the sensor tube and the fluid stream using a single domain approach. This numerical model is further verified by experimental investigation. In order to describe the transport of heat energy in both the flow region and the sensor tube, the Nusselt number at the interface between the tube wall and the gas stream as well as heatlines is presented from the numerical solution.

  • PDF