• 제목/요약/키워드: Transport cost

검색결과 814건 처리시간 0.028초

Enhancement of Power Conversion Efficiency from Controlled Nanostructure in Polymer Bulk-Hetero Junction Solar Cells

  • Wang, Dong-Hwan;Park, O-Ok;Park, Jong-Hyeok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2011
  • Polymer-fullerene based bulk heterojunction (BHJ) solar cells can be fabricated in large area using low-cost roll-to-roll manufacturing methods. However, because of the low mobility of the BHJ materials, there is competition between the sweep-out of the photogenerated carriers by the built-in potential and recombination within the thin BHJ film [12-15]. Useful film thicknesses are limited by recombination. Thus, there is a need to increase the absorption by the BHJ film without increasing film thickness. Metal nanoparticles exhibit localized surface plasmon resonances (LSPR) which couple strongly to the incident light. In addition, relatively large metallic nanoparticles can reflect and scatter the light and thereby increase the optical path length within the BHJ film. Thus, the addition of metal nanoparticles into BHJ films offers the possibility of enhanced absorption and correspondingly enhanced photo-generation of mobile carriers. In this work, we have demonstrated several positive effects of shape controlled Au and Ag nanoparticles in organic P3HT/PC70BM, PCDTBT/PC70BM, Si-PCPDTBT/PC70BM BHJ-based PV devices. The use of an optimized concentration of Au and Ag nanomaterials in the BHJ film increases Jsc, FF, and the IPCE. These improvements result from a combination of enhanced light absorption caused by the light scattering of the nanomaterials in an active layer. Some of the metals induce the plasmon light concentration at specific wavelength. Moreover, improved charge transport results in low series resistance.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

남극 크릴새우의 고액분리 기술개발 (Development of Solid/Liquid Separation Technique for Krill (Eupausia superba))

  • 오인환;장철환;김운걸;양상엽
    • 한국축산시설환경학회지
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2011
  • 크릴새우의 고액분리효율을 규명하기 위하여 크릴새우를 해빙시킨 다음 고액분리기만 사용하였을 경우, 솔 (Brush) 분쇄기 또는 날 분쇄기로 크릴새우를 분쇄한 후 고액분리기를 사용하여 효율을 측정하였을 경우로 나누어 수행하였다. 고액분리기만으로 분리한 경우와 솔분쇄기와 날분쇄기로 분쇄한 후 고액 분리기를 적용한 결과 3차 시험에서 분리효율은 각각 46.2%, 60.2%, 60.4%를 나타내었다. 고액분리기만을 사용하였을 경우보다 날 분쇄기와의 조합에서 분리효율의 증가는 2차 시험에서 10.1%, 3차 시험에서 14.2%로 각각 나타났고, 처리용량은 4.2kg/min으로 되었다. 고액분리 전에 날분쇄기로 분쇄한 후 고액분리기로 분리하는 것이 이상적이라 판단된다.

궤간변경 철도 수송 시스템의 기술적 평가 (Technical Evaluation of Railway Transportation System with the Change of Gauge)

  • 정광우;김철수;장승호
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.1954-1962
    • /
    • 2012
  • 최근 유럽과 아시아 사이의 물류 증가는 철도수송에 있어서 사회적/경제적으로 좋은 기회이며, 동시에 커다란 도전이 될 수 있다. 유라시아 대륙에는 다양한 궤간이 존재하고 있다. 이러한 궤간의 차이는 철도에 의한 화물수송시 장애요인중의 하나이다. 궤간 차이를 극복하기 위한 방법은 수송 화물의 유형에 따라 달라질 수 있으며, 국경 지점에 보관 창고 및 환적 설비와 같은 넓은 기반 시설과 많은 운영 인력수요와 같은 철도 수송 시스템의 운영에 많은 영향을 준다. 따라서 철도 수송 시스템의 효율성은 복잡한 하역 및 교환 기술에 관련된 궤간 극복 방법에 매우 의존한다. 본 논문은 궤간 극복 방법에 대한 기술적 평가를 기반으로 수송 시나리오의 효율성을 검토하고, 각 시나리오의 운영에서 요구되는 기술적 요소들을 기술하였다.

수소저항합금을 이용한 150ℓ급 수소저장용기의 제작과 특성에 관한 연구 (Fabrication and Characteristics of 150ℓ Class Hydrogen Tank Using Hydrogen Storage Alloy)

  • 강길구;강세선;권호영;이임렬
    • 한국수소및신에너지학회논문집
    • /
    • 제13권2호
    • /
    • pp.110-118
    • /
    • 2002
  • The hydrogen storage vessel having a good heat conductivity along with a simple structure and a low cost for these alloys was designed and manufactured, and then its characteristic properties were studied in this study. The various parts in hydrogen storage vessel consisted of copper pipes and stainless steel of 250 mesh reached the setting temperature after 4~5 minutes, which indicated that storage vessel had a good heat conductivity that was required in application. And also the storage vessel had a good property of hydrogen transport considering that the reaction time between hydrogen and rare-earth metal alloys in storage vessel was found to be within 10 min at $18^{\circ}C$ under 10 atmospheric pressure. It showed that the average capacity of discharged hydrogen volume was found to be $120{\ell}$ for $MmNi_{4.5}Mn_{0.5}$ under discharging conditions of $40^{\circ}C{\sim}80^{\circ}C$ at a constant flow rate of $5{\ell}$/min. It was found that the optimum discharging temperature for obtaining an appropriate pressure of 3atm was determined to be $60^{\circ}C$ for $MmNi_{4.5}Mn_{0.5}$ hydrogen storage alloy.

Determination of safety factor for agricultural gear reducer using simulation software

  • Hong, Soon-Jung;Kim, Yong-Joo;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Soo-Bok;Noh, Hyun-Seok;Jang, Jeong-Hoon
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.283-289
    • /
    • 2018
  • Agricultural gear reducers are used in a variety of agricultural machinery designs such as in agricultural tractors and transport cars, and even greenhouses. For greenhouses, a gear reducer is used to control windows on the side and the roof. Gear reducers for agricultural applications are designed using the empirical method because of the lack of a standard for experimentation. Simulation is necessary for the optimal design of an agricultural gear reducer. There are many advantages to this optimization such as low-cost maintenance, reduced size, and weight. In this study, bending and contact safety factor simulation for the gear reducer of a greenhouse was conducted by decreasing the face widths of helical gear shaft 2 and shaft 3 from 30.8 and 30 mm, respectively, at an interval of 4 mm. The bending and contact safety factors were calculated using AGMA standard. Simulation results showed that bending and contact safety factors decreased rapidly when the face width of the helical gear on shaft 2 was 30 mm and the face width of helical gear on shaft 3 decreased from 30.8 mm to 26.8 mm, suggesting that it would be safe to reduce the face width of the helical gear on shaft 3 to 26.8 mm. The reduction of the face width also reduced the weight of the agricultural gear. This study suggests that the agricultural gear reducer safety factor decreases as the face width decreases.

연료전지용 술폰화 폴리아릴렌에테르술폰 랜덤공중합체 강화복합막의 제조 및 특성 (Preparation and Characterization of Sulfonated Poly(Arylene Ether Sulfone) Random Copolymer Reinforced Membranes for Fuel Cells)

  • 안주희;이창현
    • 멤브레인
    • /
    • 제26권2호
    • /
    • pp.146-151
    • /
    • 2016
  • 술폰화 폴리아릴렌에테르술폰(SPAES) 랜덤 공중합체는 고분자 전해질 연료전지에 적용될 때 높은 수소이온전도도, 상대적으로 낮은 생산 단가 그리고 열화학적 저항성등과 같은 장점을 갖는다. 반면, SPAES 공중합체는 가혹한 구동 조건하에서 낮은 화학적 안정성과 치수 불안전성으로 인해 실제 연료전지 막에 직접적으로 적용하는데 어려움이 있다. 그에 타당한 해결책은 SPAES 공중합체를 상호 연결된 기공 구조와 높은 열화학적 강도를 가지는 지지체 필름(예 : 전기방사된 폴리이미드 지지체)에 함침시키는 것이다. 본 연구에서는 함침막 제조를 위한 이오노머로 빠른 이온 수송을 위해 높은 자유 체적을 유도하는 회전 그룹을 갖는 SPAES 공중합체를 선택하였다. 제작된 막의 실용가능성은 막 특성화를 통해 평가되었다.

천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구 (A Study on the Methane Hydrate Formation Using Natural Zeolite)

  • 박성식;안웅진;김대진;전용한;김남진
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

GIS 서비스 권역분석을 활용한 컨테이너 육상운송운임 산정방안 (Exploring Reasonable Pricing System for Inland Container Cargo Transportation Using GIS Service Area Analysis)

  • 주승민;엄정섭
    • Spatial Information Research
    • /
    • 제20권3호
    • /
    • pp.1-14
    • /
    • 2012
  • 국내 컨테이너 육상운송은 행정구역을 기준으로 요금이 산정되고 있으나 실제 차량이 이동하는 거리에 의거하여 요금이 결정되지 않아 화주와 운송인 모두에게 합리적이지 못한 방법이다. 본 연구는 GIS의 네트워크 분석 기법의 하나인 서비스 권역 분석을 이용하여 보완된 육상운송운임 산정 방안을 제시하고 현행 행정구역 기준 육상운송운임체계와 비교하여 현행 체계의 문제점을 보완할 수 있는 대안을 도출하고자 출발하였다. 본 연구에서 제시된 컨테이너 육상운송운임 권역은 현행 행정구역 기준 컨테이너 육상운송운임 방식과 비교하여 운송거리를 반영하는 요금의 형평성이나 행정적 편의성 측면에서 더욱 개선되었다고 판단된다. 본 연구가 GIS를 활용하지 않고 컨테이너 육상운송 운임을 산정하는 관행을 개선될 수 있는 계기가 되어 객관적인 데이터에 의거하여 합리적으로 운임을 결정하기 위한 중요한 참고 자료가 될 수 있을 것으로 사료된다.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.