• 제목/요약/키워드: Transport Cask

검색결과 64건 처리시간 0.017초

Dry storage of spent nuclear fuel and high active waste in Germany-Current situation and technical aspects on inventories integrity for a prolonged storage time

  • Spykman, Gerold
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.313-317
    • /
    • 2018
  • Licenses for the storage of spent nuclear fuel (SNF) and vitrified highly active waste in casks under dry conditions are limited to 40 years and have to be renewed for prolonged storage periods. If such a license renewal has to be expected since as in accordance with the new site selection procedure a final repository for spent fuel in Germany will not be available before the year 2050. For transport and possible unloading and loading in new casks for final storage, the integrity and the maintenance of the geometry of the cask's inventory is essential because the SNF rod cladding and the cladding of the vitrified highly active waste are stipulated as a barrier in the storage concept. For SNF, the cladding integrity is ensured currently by limiting the hoop stress and hoop strain as well as the maximum temperature to certain values for a 40-year storage period. For a prolonged storage period, other cladding degradation mechanisms such as inner and outer oxide layer formation, hydrogen pick up, irradiation damages in cladding material crystal structure, helium production from alpha decay, and long-term fission gas release may become leading effects driving degradation mechanisms that have to be discussed.

핵임계 안전성 검증 방법론 정립 및 적용 (Establishment and Application of Nuclear Criticality Safety Validation Methodology)

  • 이서정;차균호
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.315-330
    • /
    • 2018
  • 미임계 시설은 정상 또는 사고상태에서 핵임계안전성이 확보되어야 한다. 이를 위해선 계산된 임계도가 바이어스와 불확실도로 결정된 미임계상한치(USL)를 초과하지 않는다는 것을 검증하는 절차가 반드시 필요하다. 하지만 핵임계안전성 검증방법론은 여러 가지가 존재하며, 방법론이 달라지면 USL도 달라지므로 가장 적절한 한가지의 방법론으로 평가하는 것이 중요하다. 본 연구에서는 핵임계안전성 검증 방법론이 기술된 두 개의 문서를 비교 분석하여 한 가지 방법론으로 정립하였고, SCALE6.1 코드를 이용한 용기 설계에서의 미임계상한치 결정에 적용하였다.

고방사성 산화물핵연료의 해외수송방안 분석 (The Option Study of Oversea Shipment of DUPIC Fuel Elements to Canada)

  • 이호희;박장진;양명승;서기석
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.614-620
    • /
    • 2003
  • 원자력연구소에서는 국내 원전에서 배출된 사용후핵연료를 IMEF M6 핫셀에서 건식 재가공하여 건식공정 산화물핵연료를 개발하였다. 개발된 핵연료의 성능을 검증하기 위해서는 실제 상용로와 동일한 고온고압 조건하에서 조사시험이 필요하나 국내에는 이러한 조사시설을 갖추지 못하고 있으므로 핵연료 성능의 검증이 어렵던 차에 한$\cdot$$\cdot$미 IAEA간의 국제공동연구 과제진도회의에서 AECL측은 중성자비를 받지 않고 캐나다 NRU에서 건식공정 산화물핵연료를 조사시험을 할 수 있다고 제안하였다. NRU 조사시험을 하고자 하는 핵연료는 건식공정 산화물핵연료봉 10개(약 6kgU)이며 운반물 분류등급에 따라 제7종 위험물로 핵분열성물질에 해당한다. 일반적으로 소량의 방사성물질을 운반할 경우에는 비용뿐 아니라 수송기간 측면에서 항공수송이 선박수송에 비해 유리한 것으로 알려져 있어 항공기를 이용한 건식공정 산화물핵연료의 해외 수송방안을 검토하였다. 검토결과, 현재 건식공정 산화물핵연료봉 10개를 운반할 수 있는 적절한 항공수송용 수송용기가 없어 항공수송이 불가능한 것으로 조사되었다. 선박을 이용한 해외 수송방안은 가능하나 이 경우에는 전용선박을 사용해야 함으로 비용이 많이 수요되는 것으로 분석되었다.

  • PDF

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.