• Title/Summary/Keyword: Transport Calculation

Search Result 424, Processing Time 0.026 seconds

NUMERICAL MODELLING OF SEDIMENT TRANSPORT IN CONNECTION WITH ARTIFICIAL GRAIN FEEDING ACTIVITIES IN THE RIVER RHINE

  • Duc Bui Minh;Wenka Thomas
    • Water Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.17-30
    • /
    • 2005
  • The bed evolution of the stretch of the River Rhine between km-812.5 and km-821.5 is characterised by general bed degradation as a result of the river training works and dredging activities of the last two centuries. The degradation of the river bed affects the water levels, and so the navigation conditions. To combat the erosion of the river bed with the aim to keep up the shipping traffic and to avoid the ecological system damages due to water level reductions, sand-gravel-mixtures were added to the river (so called artificial grain feeding activities). This paper presents the results of an application of a graded sediment transport model in order to study morpholodynamical characteristics due to artificial grain feeding activities in the river stretch. The finite element code TELEMAC2D was used for flow calculation by solving the 2D shallow water equation on non-structured grids. The sediment transport module SISYPHE has been developed for graded sediment transport using a multiple layer model. The needs to apply such graded sediment transport approaches to study morphological processes in the domain are discussed. The calculations have been carried out for the case of middle water flow and different size-fraction distributions. The results show that the grain feeding process could be well simulated by the model.

  • PDF

A study on the electron transport coefficients using monte carlo method in argon gas (몬테칼로법을 이용한 Ar기체의 전자수송계수에 관한 연구)

  • 하성철;전병훈
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.685-692
    • /
    • 1995
  • The electron transport coefficients in argon gas is studied over the range of E/N values from 85 to 566 Td by the Monte Carlo method considering the latest cross section data. The result of the Monte Carlo method analysis shows that the value of the electron transport coefficients such as the electron drift velocity, the ratio of the longitudinal and transverse diffusion coefficients to the mobility. It is also found that the electron transport coefficients calculated by the two-term approximation analysis agree well with those by Monte Carlo calculation. The electron energy distributions function were analysed in argon at E/N=283, and 566 Td for a case of the equilibrium region in the mean electron energy. A momentum transfer cross section for the argon atom which was consistent with both of the present electron transport coefficients was derived over the range of mean electron energy from 10.3 to 14.5 eV, also suggested as a set of electron cross section for argon atom. The validity of the results obtained has been confirmed by a Monte Carlo simulation method.

  • PDF

Traffic management for large-scale evacuation with public transportation and calculation of appropriate operating ratio

  • Ham, Seunghee;Lee, Jun;Lee, Sang Jo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3347-3352
    • /
    • 2022
  • In 2013, the International Atomic Energy Agency (IAEA) changed the recommended maximum range of the Emergency Planning Zone (EPZ) to 30 km, and the Kori Nuclear Power Plant in Republic of Korea has also expanded the EPZ to 30 km, following the recommendation. As a result, metropolitan cities with a high population density are contained within the EPZ, and evacuating millions of people should be considered if the 30 km range of evacuation is to take place. This study proposes an evacuation plan using buses (public transportation) to transport people outside of the EPZ, quickly and efficiently. To verify the appropriate mode share ratio of buses that can guarantee the right of vulnerable road users and reduce traffic congestion, a model was built simulating the Kori Nuclear Power Plant in Ulsan Metropolitan City. The scenarios were established by changing the mode share ratio of buses and passenger cars by 10%. Considering a large-scale network analysis at the city level, a cell transmission model was applied to calculate the evacuation time in each scenario. The result shows that the optimal mode share ratio of buses is 40%, with a total evacuation time of 132 min, considering feasible bus fleets in Ulsan Metropolitan City.

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Numerical Model Calibration and Verification for Riverbed Change Prediction (하천의 하상변동 예측을 위한 수치모형의 보정 및 검증에 관한 연구)

  • Kim, Gwon-Han;Ji, Un;Yeo, Woon-Kwang;Jeong, Won-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1739-1744
    • /
    • 2010
  • The calculation method using the numerical model developed is currently one of the mose required method to predict sediment transport and bed changes in the rivers. Specially, it is real condition that is applying as it is a single sediment transport equation and sediment transport mode mostly without verification process with field data. The sensitivity analysis and calibration process considering the different sediment transport equations and sediment transport modes should be performed for the accurate bed change prediction of the specified study reach using the a model. Through its process, the optimum sediment transport equation and mode for the study reach should be defined. In this study, bed changes for the actual river are computed using the CCHE2D model allowed to select various sediment transport equations and modes. The bed change sensitivity analysis with different ranges of river flow discharge through its process, the optimum sediment transport equation and mode for the study reach should be defined. The bed change simulation with the actual hydraulic condition and the modeling results are compared with the field survey results.

  • PDF

NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA IN POLYMER ELECTROLYTE FUEL CELLS (고체고분자형 연료전지 내의 이동현상에 대한 수치해석)

  • Park, C.G.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • A three dimensional numerical model to predict the flow and transport of mixtures and also the electrochemical reactions in polymer electrolyte membrane (PEM) fuel cells is developed. The numerical computation is base on vorticity- velocity method. Governing equations for the flow and transport of mixtures are coupled with the equations for electrochemical reactions and are solved simultaneously including production and condensation of vapor. Fuel cell performance predicted by this calculation is compared with the experimental results and resonable agreements are achieved.

Selective detection of AC transport current distributions in GdBCO coated conductors using low temperature scanning Hall probe microscopy

  • Kim, Chan;Kim, Mu Young;Park, Hee Yeon;Ri, Hyeong-Ceoul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • We studied the distribution of the current density and its magnetic-field dependence in GdBCO coated conductors with AC bias currents using low temperature scanning Hall probe microscopy. We selectively measured magnetic field profiles from AC signal obtained by Lock-in technique and calculated current distributions by inversion calculation. In order to confirm the AC measurement results, we applied DC current corresponding to RMS value of AC current and compared distribution of AC and DC transport current. We carried out the same measurements at various external DC magnetic fields, and investigated field dependence of AC current distribution. We notice that the AC current distribution unaffected by external magnetic fields and preserved their own path on the contrary to DC current.

Monte Carlo Resonance Treatment for the Deterministic Transport Lattice Codes

  • Kim Kang-Seog;Lee Chung Chan;Chang Moon Hee;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.581-595
    • /
    • 2003
  • Transport lattice codes require the resonance integral tables for the resonant nuclides where the resonance integral is a function of the background cross section and can be prepared through a special program solving the slowing down equation. In case the cross section libraries do not include the resonance integral table for the resonant nuclides, the computational prediction produces a large error. We devised a new method using a Monte Carlo calculation for the effective resonance cross sections to solve this problem provisionally. We extended this method to obtain the resonance integral table for general purpose. The MCNP code is used for the effective resonance integrals and the LIBERTE code for the effective background cross sections. We modified the HELIOS library with the effective cross sections and the resonance integral tables obtained by the newly developed Monte Carlo method, and performed sample calculations using HELIOS and LIBERTE. The results showed that this method is very effective for the resonance treatment.

Development of Transport Parameters affecting on the Removal of Micro Organic Compounds such as Disinfection By-Products and Pharmaceutically Active Compounds by Low-Pressure Nanofiltration

  • Oh, Jeong-Ik;Yamamoto, Kazuo
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • This study investigated the removal characteristics of various micro organic compounds by low-pressure nanofiltration membranes comprised of disinfection by products and pharmaceutically active compounds. The experimental removal of micro organic compounds by low-pressure nanofiltration membranes was compared with the transport model calculations, which consist of diffusion and convection terms including steric hindrance factor. The selected molecule from the disinfection byproducts and pharmaceutical active compounds showed a much lower removal than polysac-charides with a similar molecular size. However,the difference between model calculation and experimental removal of disinfection by-products and pharmaceutically active compounds could be corrected. The correlation of Ks with solute radius was further considered to clarity transport phenomena of micro organic solutes through nanofiltration membranes.

Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands

  • Kim, Hyun-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.325-330
    • /
    • 2019
  • Band convergence is known to be effective in improving thermoelectric performance by increasing the Seebeck coefficient without significantly reducing electrical conductivity. Decoupling of the Seebeck coefficient and electrical conductivity in converged bands is the key requirement. Yet, the degree of decoupling depends on the band parameters of the converging bands. Herein, we report theoretical transport properties of two valence bands as their energy difference changes from 0.25 eV to 0 eV. In order to demonstrate the effect of band parameters in transport, we first conducted calculations for the case where the two bands have the same parameters. Then, we conducted the same calculation by doubling the density-of-states effective mass of one valence band. Given that there are two bands, each band's effective mass was doubled one at a time while the other band's effective mass remained constant. We found that the decoupling was strongest when the bands participating in convergence had the same band parameters.