• Title/Summary/Keyword: Transport Airplane

Search Result 28, Processing Time 0.024 seconds

Implement integrated vehicle state and video recorder system with OBD-II and MOST network (OBD-II 와 MOST를 이용한 통합형 자동차 상태 및 영상 저장 시스템 구현)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2011
  • Vehicle black boxes that have similar functions as airplane black boxes are currently being used due to the loss of many lives and properties arising from vehicle accidents. Both black-box products and Event Data Recorder(EDR) systems are currently available in the market. Most of the existing in-vehicle black boxes, however, record only external videos and images and cannot show the vehicle's driving status, whereas EDR products record only the driving status and not external videos. To address the problem of black boxes that can record only videos and images and that of EDR systems that can record only driving data, an integrated vehicle state and video recording system that uses MOST(Media-oriented System Transport) and OBD-II(Onboard Diagnostics II) and CAM (camera) and GPS (global positioning system).

Analysis of Factors Affecting the Adoption of Urban Air Mobility (UAM) (도심항공교통(UAM) 수용에 영향을 미치는 요인 분석)

  • Ju, Hyo-Geun;Park, Jin-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.96-104
    • /
    • 2021
  • Technological advances have recently led to the development of Urban Air Mobility (UAM) which is a small airplane being able to take off and land vertically. It is emerging as an alternative to transportation services in the city in the future because of the advantage of providing speed and congestion problem in cities like taxis. This research aim to study the user's acceptance of UAM. Based on the survey conducted abroad, the analysis was carried out based on th Technology Acceptance Model (TAM), by Davis et al. (1989). According to the data analysis results of 292 people, Technology, Reliability and Price effect perceived usefulness, which in turn effects Behavioral intention. UAM cannot be operated independently by a single company. It consists of partnerships with vehicles, transport platforms, batteries and other related company. To improve acceptance of UAM, it is required that collaboration between companies and support from government. And while UAM is being developed, research on acceptance from user's point of view should continue.

System Safety Assessment for KC-100 Civil Aircraft (KC-100 민간항공기 체계안전성 평가)

  • Kang, Min Seong;Koh, Dae Woo;Choi, Nag Sun;Cheon, Young Seong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • KC-100 is a 4 seats, single piston engine, civil aircraft whose type certificate is applied for KAS 23 (FAR 23) for the first time in Korea. Its system safety assessment and analysis have been conducted to meet the minimum safety requirement in KAS 23 and to verify the safety of equipment, system, and installation in accordance with the requirement of ${\S}$23.1309 and the guidelines in FAA AC 23.1309-1D and SAE ARP 4761. This safety assessment begins with the FHA (Functional Hazard Assessment) at aircraft and system level in preliminary design phase, and all of the safety assessment and analysis reports including the preliminary version of SSA (System Safety Assessment) have been prepared during detail design phase. The revised version of these safety reports will be approved by Airworthiness Authority through the ground and flight test phases. In this paper, the safety assessment requirement in ${\S}$23.1309, safety assessment guideline in AC 23.1309-1D, and safety assessment and analysis methods in ARP 4761 will be explained based on the application example for KC-100 development. The experience and knowledge of this system safety assessment for civil aircraft can be applied to commuter aircraft of FAR 23 class or large transport airplane of FAR 25 class.

  • PDF

A Solution for Reducing Transmission Latency through Distributed Duty Cycling in Wireless Sensor Networks (무선 센서 네트워크에서 수신구간 분산 배치를 통한 전송지연 감소 방안)

  • Kim, Jun-Seok;Kwon, Young-Goo
    • 한국ITS학회:학술대회논문집
    • /
    • v.2007 no.10
    • /
    • pp.225-229
    • /
    • 2007
  • Recently, wireless sensor networks are deployed in various applications range from simple environment monitoring systems to complex systems, which generate large amount of information, like motion monitoring, military, and telematics systems. Although wireless sensor network nodes are operated with low-power 8bit processor to execute simple tasks like environment monitoring, the nodes in these complex systems have to execute more difficult tasks. Generally, MAC protocols for wireless sensor networks attempt to reduce the energy consumption using duty cycling mechanism which means the nodes periodically sleep and wake. However, in the duty cycling mechanism. a node should wait until the target node wakes and the sleep latency increases as the number of hops increases. This sleep latency can be serious problem in complex and sensitive systems which require high speed data transfer like military, wing of airplane, and telematics. In this paper, we propose a solution for reducing transmission latency through distributed duty cycling (DDC) in wireless sensor networks. The proposed algorithm is evaluated with real-deployment experiments using CC2420DBK and the experiment results show that the DDC algorithm reduces the transmission latency significantly and reduces also the energy consumption.

  • PDF

Application of Software Quality Model and Metric for Software Product Assurance for KASS Control Station (KASS 통합운영국 소프트웨어 품질 보증을 위한 소프트웨어 품질 모델 및 메트릭 적용방안)

  • Kim, Youn-sil;Lee, Eun-sung
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Korea augmentation satellite system (KASS) is the Korean satellite based augmentation system (SBAS) developed by ministry of land, infrastructure, and transport (MOLIT) since 2014. Since KASS is the safety critical system that can affect to the safety of airplane, the software of KASS is developed according to the DO178B software level induced from safety analysis. In case of KASS control station (KCS), most of the software of KCS get assigned software level E in DO178B. In that case, ECSS-Q-ST-80C category D is assigned as a software product assurance standard. In this paper, the software related standard ECSS-E-ST-40C, ECSS-Q-HB-80-04A are analyzed to satisfy ECSS-Q-ST-80C and as a result the software product assurance activities regarding software life cycle and the software quality model, metric is proposed for the product assurance of the KCS software.

A Study on Means of Compliance for Lightning Protection in the System and Structure of Air Vehicles (비행체 시스템과 구조물의 낙뢰 보호 적합성 입증방법에 관한 고찰)

  • Jeong, Duckyoung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.49-55
    • /
    • 2020
  • The average probability of a lightning strike to transport aircraft operating in airline service has been estimated to be approximately one strike in every year (or one strike per 1,000 through 20,000 flight hours). The important thing is not the probability of a lightning strike to aircraft, but the fact that aircraft is struck by lightning. Therefore, lightning protection design for aircraft should be qualified and compliance with airworthiness standards related to lightning protection must be substantiated in the process of certification. In this paper, I studied means of compliance for lightning protection through analysis of some test cases, including the KC-100 airplane that firstly obtained civil type certificate in Korea. Based on this paper, it will be also necessary to study on the effect of lightning for space launch vehicles.

Recent Trends in Compensation for Mental Anguish of Airline Passengers (항공여객의 정신적 손해배상에 관한 최근 동향 - 미국 연방법원 판례를 중심으로 -)

  • Lee, Chang-Jae
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.1
    • /
    • pp.33-62
    • /
    • 2020
  • The current air transportation industry is facing a lot of changes not only in the quantitative growth of the market, but also in the legal aspects. For many years, the Warsaw Convention has contributed to the uniform discipline of civil carriers' legal liabilities arising from international aviation accident and has fulfilled the duties of legal guardians for the development of the air transport industry. In the process, however, the consumer interests of the air transport industry did not have much protection compared to other industries. In response, the Montreal Convention has effected for protecting the interests of aviation consumers, and there are numerous legal changes around the world to protect aviation consumers like passengers. The mental damages of airline passengers arising from the accident can also be understood as part of the protection of air consumers. Considering that the US Federal Court has dealt with the recognition of mental damages for air passengers since the early 1990s. However, Korean judicial precedent still excludes mental anguishes from the scope of damage compensation. From this point of view, it is considered academically meaningful to analyze the latest case of the US federal court. Recently, the United States Court of Appeal for the Sixth Circuit in Doe v Etihad Airways applied a different interpretation against the traditional opinion: passengers could not recover for mental distress unless that mental distress resulted from a bodily injury sustained in an airplane accident. The background of the court's conclusions can be explained in many ways, among other things, unlike the Warsaw Convention the new international rule, Montreal Convention is recognizing the importance of ensuring protection of the interests of consumers in international carriage by air and the need for equitable compensation based on the principle of restitution.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.