• Title/Summary/Keyword: Transport&Dispersion

Search Result 266, Processing Time 0.028 seconds

Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis (공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화)

  • Kim, Jooil;Park, Sunyoung;Park, Mi-Kyung;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.

Characteristics of out-band dispersion of OADM using cascaded FBG in WDM/SCM systems (WDM/SCM시스템에서 Cascaded FBG를 이용한 OADM의 Out-band 분산 특성)

  • 원훈재;전금수;반재경
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.51-57
    • /
    • 2004
  • We have analyzed the effect of out-band dispersion in the cascaded fiber Bragg Elating(FBG) based optical add-drop multiplexers(OADM) when bypassed wavelengths contain SCM signals. In order to compute this impairment the dispersion characteristics of FBG have been analytically calculated by solving their coupled wave equations, and the Fourier method is applied to IMD analysis. The out-band dispersion effects over WDM/SCM signals are analyzed under different and common system situations as: ITU channel spacing(100, 50, 25 GHz), channel density parameter, frequency extension of the SCM plan, modulation characteristics, FBG length, etc. From this results, the transport of WDM/SCM signals in future DWDM transport networks could be limited by this effect which has to be taken into account for designing future networks.

An experimental study on the correlation of hydraulic mean radius and hydrodispersive parameters in rockfill porous media (자갈 다공성매질에서 수리평균반경과 수리분산 매개변수의 상관성에 관한 실험적 연구)

  • Han, Ilyeong;Lee, Jaejoung;Kim, Gyoo Bum
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.863-873
    • /
    • 2021
  • The mechanical dispersion which dominates solute transport in porous media is caused by the difference in flow velocity within pores. Longitudinal dispersion coefficient and longitudinal dispersivity that are hydro-dispersive parameters of advection-dispersion equation can only be obtained by experiment. Hydraulic mean radius that represents the amount and intensity of flowing water within pores can be obtained by the formula using the factors for physical properties. A slug injection test was conducted and a power type empirical formula for obtaining a longitudinal dispersivity using a hydraulic mean radius in rockfill porous media was derived. It is possible to obtain the longitudinal dispersivity depending on transport distance because it contains a formula for a scale constant, and expected to be applicable to waterways filled with homogeneous gravel and small flow rate.

Analysis of Behavior Characteristics of Instantaneous Input of Pollutant in River (하천에 순간 유입된 오염물질의 거동 특성 분석)

  • Yoon, Sei-Eui;Ko, Jae-Hyung;Kim, Soo-Youl
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.575-586
    • /
    • 2003
  • In case of continuous input of a pollutant, dispersion characteristics do not change much with changing dispersion coefficient, but that of an instantaneous input is very sensitive to the changes of dispersion coefficient. The characteristics of behavior of instantaneous input of a pollutant at the downstream of Han river were analyzed in this paper Field measurement of hydraulic and water quality factors at the downstream of Han river were conducted at low flow condition. The hydraulic factors were used to estimate the longitudinal dispersion coefficient, and the reasonable empirical equations for longitudinal dispersion coefficient at the downstream of Han river were suggested. The measured concentrations of BOD were closely matched with the calculated ones from RMA-4 model. In case of instantaneous input, range of dispersion, transport pathway and the traveltimes of the first and maximum concentration with variation of the longitudinal dispersion coefficients and water levels of downstream boundary were evaluated in this paper.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

1D contaminant transport using element free Galerkin method with irregular nodes

  • Rupali, S.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.203-221
    • /
    • 2016
  • The present study deals with the numerical modelling for the one dimensional contaminant transport through saturated homogeneous and stratified porous media using meshfree method. A numerical algorithm based on element free Galerkin method is developed. A one dimensional form of the advectivediffusive transport equation for homogeneous and stratified soil is considered for the analysis using irregular nodes. A Fortran program is developed to obtain numerical solution and the results are validated with the available results in the literature. A detailed parametric study is conducted to examine the effect of certain key parameters. Effect of change of dispersion, velocity, porosity, distribution coefficient and thickness of layer is studied on the concentration of the contaminant.

A Comparative Study of Tracer Tests in Fractured and Porous Media (단열 및 다공질 대수층에서의 추적자 시험연구)

  • 이진용;이지훈;김용철;천전용;이민효;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.132-135
    • /
    • 2001
  • To understand and compare tracer transport in fractured and porous media. multiple tracer tests were conducted in Wonju and Uiwang sites. The target media were fractured in Wonju site and porous in Uiwang site. It was known that groundwater flow for the two hydrogeologic systems could be represented using a EPM approach. However, the tracer transport in the two aquifer systems was greatly different. In this study, we analyzed the different tracer transport behavior in the two systems, from which our understanding of the tracer dispersion was greatly enhanced. we used bromide and chloride as tracers.

  • PDF

Flow and Diffusion of Lower Han River Considering Tidal Elevation in Yellow Sea (서해안 조위를 고려한 한강 하류부의 흐름 및 확산)

  • Seo, Il-Won;Song, Chang-Geun;Lee, Myung-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.199-202
    • /
    • 2008
  • It is well-known fact that tidal difference between the ebb and flow in Yellow Sea is about 9 m so that it has largest value in the world. This wide range of tide level enables Yellow Sea water to intrude into main stream of Han River. However, the study of the tidal reach of Han River has not been carried out thoroughly since North and South Koreas share this region so that topography data and physical measurement are lacking. In this study, to examine the reverse flow and dispersion behavior by tidal effect at the tidal reach of Han River, 2-D river analysis models were applied. RMA-2 was applied to calculate the horizontal velocities and water surface elevation. With the results of velocities and water depth, RAM4, which is 2-D advection-dispersion model based on FEM was simulated to analyze the horizontal transport behavior of BOD.

  • PDF

The Behavior of Leachate on The Transient Condition in The Nanji Waste Landfill (부정류 상태에서의 난지도 매립지 침출수 거동 예측)

  • 강동희;조원철;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.57-67
    • /
    • 2001
  • The purpose of this study is to predict appropriate leachate rates and leachate transport velocity through weathered zone and basement rock on the transient condition at Nanji waste landfill. The leachate transport in the Nanji waste landfill is analyzed using MODFLOW(A Modular 3-D Finite Different Groundwater Flow Model) model which simulates three dimension groundwater flow and MT3D(A Modular Three Dimentional Transport Model) model which describes three dimensional transport for advection, dispersion and chemical reaction of dissolved constituents in groundwater system on the transient condition. Leachate production rates are estimated by HELP(Hydraulical Evaluation of Landfill Performance) model and used weather records for recent 10 years. Leachate transport is predicted by a change of leachate level to after/before established HDPE, established slurry wall and wells.

  • PDF

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.