• Title/Summary/Keyword: Transparent solar cells

검색결과 245건 처리시간 0.039초

PIN形 非晶質 硅素 太陽電池의 製作 및 特性 (Fabrication and Characteristics of PIN Type Amorphous Silicon Solar Cell)

  • 박창배;오상광;마대영;김기완
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.30-37
    • /
    • 1989
  • Silane($SiH_4$), methane($CH_4$), diborane(B_2H_6)그리고 phosphine($PH_3$)을 이용하여 rf글로방전분해법으로 PIN형 a-SiC:H/a-Si:H 이종접합 태양전지를 제작하였다. $SnO_2/ITO$층 형성치 태양전지의 효율은 ITO 투명전극만의 경우보다 1.5% 향상되었다. 제작조건은 P층의 경우 $CH_4/SiH_4$의 비를 5로 하고 두께는 $100{\AA}$이었다. I층은 P층위에 증착하였으나 진성이 아니고 N형에 가깝다. 이 I층을 진성으로 바꾸기 위해서 0.3ppm의 $B_2H_6$$SiH_4$에 혼합하여 5000${\AA}$증착했다. 또한 N층은 $PH_4/SiH_4$의 비를 $10^{-2}$로 하여 $400{\AA}$ 증착시켰다. 그 결과 입사강도가 15mW/$cm^2$일 때 개방전압 $V_{oc}=O'$단락전류밀도 $J_{sc=14.6mA/cm^2}$, 충진율 FF=58.2%, 그리고 효율 ${eta}=8.0%$를 나타내었다. 빛의 반사에 의한 손실을 감소시키기 위하여 $MgF_2$를 유리기판위에 도포하였다. 이에 의한 효율은 0.5% 향상되어 전체적인 효율은 8.5%였다.

  • PDF

Synthesis and Characterization of Novel Hydrogenated Poly(norbornene bisimide)s Prepared from Ring Opening Metathesis Polymerization

  • Yoon, Kyung-Hwan;Park, Seung-Beom;Park, In-Sook;Yoon, Do-Y.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.3074-3080
    • /
    • 2011
  • We synthesized three novel poly(norbornene bisimide)s by ring opening metathesis polymerization (ROMP) and subsequent hydrogenation. Their thermal, mechanical and optical properties were investigated with TGA, DMA, UV-Vis spectrometer, and optical reflectometer. The new polymers showed high glass transition temperatures over $260^{\circ}C$ and good thermal stability with 5% wt-loss temperature higher than $390^{\circ}C$. When solvent casted, they yielded optically transparent and dimensionally stable films with a relatively low coefficient of thermal expansion of about 50 ppm $K^{-1}$. Therefore, the bisimide moieties substantially enhanced thermal and dimensional stabilities, as compared with normal ROMP-prepared polynorbornene films. Though the water uptake was increased to 0.6 wt-%, this water uptake is still considerably lower than that for polyethersulfones (1.4 wt-%) or polyimides (2.0 wt-%). Hence, the new poly(norbornene bisimide)s may become attractive candidates for flexible substrates of optoelectronic devices such as displays and photovoltaic solar cells.

Effect of Pressure and Temperature on Al-doped Zinc Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2016
  • In this paper, we report electrical, optical and structural properties of Al-doped zinc oxide (AZO) thin films deposited at different substrate temperatures and pressures. The films were prepared by radio frequency (RF) magnetron sputtering on glass substrates in argon (Ar) ambient. The X-ray diffraction analysis showed that the AZO films deposited at room temperature (RT) and 20 Pa were mostly oriented along a-axis with preferred orientation along (100) direction. There was an improvement in resistivity ($3.7{\times}10^{-3}{\Omega}-cm$) transmittance (95%) at constant substrate temperature (RT) and working pressure (20 Pa) using the Hall-effect measurement system and UV-vis spectroscopy, respectively. Our results have promising applications in low-cost transparent electronics, such as the thin-film solar cells and thin-film transistors due to favourable deposition conditions. Furthermore our film deposition method offers a procedure for preparing highly oriented (100) AZO films.

  • PDF

Two-dimensional heterostructures for All-2D Electronics

  • 이관형
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.100-100
    • /
    • 2016
  • Among various two-dimensional (2D) materials, 2D semiconductors and insulators have attracted a great deal of interest from nanoscience community beyond graphene, due to their attractive and unique properties. Such excellent characteristics have triggered highly active researches on 2D materials, such as hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and tungsten diselenide (WSe2). New physics observed in 2D semiconductors allow for development of new-concept devices. Especially, these emerging 2D materials are promising candidates for flexible and transparent electronics. Recently, van der Waals heterostructures (vdWH) have been achieved by putting these 2D materials onto another, in the similar way to build Lego blocks. This enables us to investigate intrinsic physical properties of atomically-sharp heterostructure interfaces and fabricate high performance optoelectronic devices for advanced applications. In this talk, fundamental properties of various 2D materials will be introduced, including growth technique and influence of defects on properties of 2D materials. We also fabricate high performance electronic/optoelectronic devices of vdWH, such as transistors, memories, and solar cells. The device platform based on van der Waals heterostructures show huge improvement of devices performance, high stability and transparency/flexibility due to unique properties of 2D materials and ultra-sharp heterointerfaces. Our work paves a new way toward future advanced electronics based on 2D materials.

  • PDF

저온공정에서 제작한 ZnO:Al 박막의 특성 분석

  • 정유섭;김상모;홍정수;손인환;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.201-202
    • /
    • 2009
  • ZnO:Al transparent conductive films for solar cells were deposited on the glass substrates at room temperature by facing target sputtering (FTS) method. The sputtering targets were 100 mm diameter disks of 2w.t..%. AZO and Zn metal. ZnO:Al thin films were deposited as a function film thickness. A base pressure was $2{\times}10^{-6}$torr, and a working pressure was 1mTorr. The properties of thin films on the structural, electrical and optical properties of the deposited films were investigated using a four-point probe (Chang-min), an X-ray diffraction (Rigaku), a Hall Effect measurement (Ecopia), an UV/VIS spectrometer (HP) and a $\alpha$-step (Tencor). The lowest resistivity of film was $5.67{\times}10^{-4}[{\Omega}-cm]$ at 500nm. The average transmittance of over 80% was seen in the visible range.

  • PDF

졸겔법을 통한 TiO2 합성 및 pH에 따른 DSSC의 전기화학적 특성 (Synthesis of TiO2 by Sol-gel Method and Electrochemical Properties of DSSCs with Controlling pH)

  • 박아름;김선훈;김두근;구할본;기현철
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.620-625
    • /
    • 2012
  • The sol-gel method has been widely used to synthesize the $TiO_2$ for dye sensitized solar cells and has advantages of easily fabrication process, controlling the $TiO_2$ phase and getting transparent thin-film composed of the $TiO_2$. In this paper, we synthesized the crystalline $TiO_2$ by sol-gel method controlled by the quantity ratio of Nitric acid and Ammonium hydroxide additives. The best efficiency result was obtained by 0.05 M Ammonium hydroxide and that results of Voc, Jsc, FF, and efficiency were 0.68 V, 3.28 mA/$cm_2$, 58.14 and 5.21%, respectively.

화합물 박막 태양전지 적용을 위한 $CuInS_2$ 나노분말의 제조 및 특성 평가 (Manufacturing and Characterization of $CuInS_2$ Nanopowder for Compound Thin Film Solar Cell)

  • 이대걸;이남희;오효진;윤영웅;황종선;김선재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2113_2114
    • /
    • 2009
  • Chalcopyrite based sollar cells have received much attention because of their tunable electronic and optical properties. As a typical ternary chalcopyrite material, $CuInS_2$ has been considered as one of the most popular and promising candidates as absorber materials for photovoltaic applications because of its high absorption coefficient and environmental consideration. In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at $196^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally turned to black by reduction of OH- radicals. The prepared powders were fully characterized using SEM, XRD. The particle shape of black colored powders showed sphere with about 50 nm in particle size compared to those with dark green colored powders showed irregular shape with about $1{\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$.

  • PDF

Improved Electrical and Optical Properties of ITO Films by Using Electron Beam Irradiated Sputter

  • Wie, Sung Min;Kwak, Joon Seop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.407-408
    • /
    • 2013
  • Thin transparent conductive oxides (TCOs) having a thickness lower than 30 nm have been widely usedin touch screen panels. However the resistivity of the TCO films significantly increases as the thickness decreases, due to the poor crystallinity at very thin thickness of TCO films. In this study, we have investigated the effect of electron beam irradiation during the sputtering on the electrical properties and transmittance of 30 nm-thick ITO films, which have a different SnO2 atomic percent, prepared by magnetron sputtering at room temperature. Fig. 1 shows the variation of resistivity of ITO films with a different SnO2 atomic percent for both the normal ITO films and electron beam irradiated ITO films. As shows in Fig. 1, the electron beam irradiation to the ITO (SnO2 weight percent 10%) films during the sputtering resulted in a significantly decreased in resistivity from $7.4{\times}10^{-4}{\Omega}-cm$ to $1.5{\times}10^{-4}{\Omega}-cm$ and it also increased in transmittance from 84% to 88% at a wavelength of 550 nm. These results can be attributed to energy transfer from electron to ad-atoms of ITO films during the electron beam irradiated sputtering, which can enhance the crystallinity of 30 nm-thick ITO films. It is strongly indicate that electron beam irradiation can greatly improve the electrical properties and transmittance of very thin ITO films for touch screen panels, flexible displays and solar cells.

  • PDF

Polyol process를 이용한 태양전지용 $CuInS_2$ 나노분말 제조 및 특성평가 (Characterization and Manufacturing for Solar Cells $CuInS_2$ Nanopowder by polyol process)

  • 이대걸;이남희;오효진;윤영웅;황종선;김선재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.30-32
    • /
    • 2009
  • In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at 196$^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally fumed to black by reduction of $OH^-$ radicals. The prepared powders were fully characterized by SEM, XRD and UV-Vis. The particle shape of black colored powders showed sphere with about 30 nm in particle size compared to those with dark green colored powders showed irregular shape with about 1 ${\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$. The UV-Vis spectra showed broad shoulder at 430 and 780 nm corresponding to 2.78 and 1.58 eV for the dark green colored one and black colored one, respectively.

  • PDF

마그네트론 스퍼터를 이용한 Ar 가스 유량 조절에 따른 GZO의 특성 변화 (Effect of Ar Flow Ratio on the Characteristics of Ga-Doped ZnO Grown by RF Magnetron Sputtering)

  • 정영진;이승진;손창식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The structural, optical, and electrical properties of Ga-doped ZnO (GZO) thin films on glass substrates grown by radio-frequency(RF) magnetron sputtering were investigated. The flow ratio of Ar was varied as a deposition parameter for growing high-quality GZO thin films. The structural properties and surface morphologies of GZO were characterized by the X-ray diffraction. To analyze the optical properties of GZO, the optical absorbance was measured in the wavelength range of 300-1100 nm by using UV-VIS spectrophotometer. The optical transmittance, absorption coefficient, and optical bandgap energy of GZO thin films were calculated from the measured data. The crystallinity of GZO thin films is improved and the bandgap energy increases from 3.08 to 3.23eV with the increasing Ar flow ratio from 10 to 100 sccm. The average transmittance of the films is over 88% in the visible range. The lowest resistivity of the GZO is $6.215{\times}10^{-4}{\Omega}{\cdot}cm$ and the hall mobility increases with the increasing Ar flow ratio. We can optimize the characteristics of GZO as a transparent electrode for thin film solar cells by controlling Ar flow ratio during deposition process.

  • PDF