• Title/Summary/Keyword: Transparent semiconductor

Search Result 238, Processing Time 0.027 seconds

Transparent-Oxide-Semiconductor Based Staggered Self-Alignment Thin-Film Transistors

  • Yamagishi, Akira;Naka, Shigeki;Okada, Hiroyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1105-1106
    • /
    • 2008
  • Staggered type self-aligned transparent-oxide-semiconductor transistors with indium-zinc-oxide as a semiconductor have studied. In this device fabrication, successive sputtering of oxide semiconductor and insulator without breaking of vacuum and without exposing in air, humidity and oxygen can be realized because oxide semiconductor is transparent. As a result of fabrication, transistor characteristics with mobility of $30cm^2/Vs$ and on-off ratio of $10^5$ could be obtained for the newly developed self-alignment device structure.

  • PDF

A Study on the Growth Temperature of Atomic Layer Deposition for Photocurrent of ZnO-Based Transparent Flexible Ultraviolet Photodetector (원자층 증착법의 성장온도에 따른 산화아연 기반 투명 유연 자외선 검출기의 광전류에 대한 연구)

  • Choi, Jongyun;Lee, Gun-Woo;Na, Young-Chae;Kim, Jeong-Hyeon;Lee, Jae-Eun;Choi, Ji-Hyeok;Lee, Sung-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.80-85
    • /
    • 2022
  • ZnO-based transparent conductive films have been widely studied to achieve high performance optoelectronic devices such as next generation flexible and transparent display systems. In order to achieve a transparent flexible ZnO-based device, a low temperature growth technique using a flexible polymer substrate is required. In this work, high quality flexible ZnO films were grown on colorless polyimide substrate using atomic layer deposition (ALD). Transparent ZnO films grown from 80 to 200℃ were fabricated with a metal-semiconductor-metal structure photodetectors (PDs). As the growth temperature of ZnO film increases, the photocurrent of UV PDs increases, while the sensitivity of that decreases. In addition, it is found that the response times of the PDs become shorter as the growth temperature increases. Based on these results, we suggest that high-quality ZnO film can be grown below 200℃ in an atomic layer deposition system, and can be applied to transparent and flexible UV PDs with very fast response time and high photocurrent.

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power (RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성)

  • Zhang, Ya Jun;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

The Transparent Semiconductor Characteristics of ZnO Thin Films Fabricated by the RF Magnetron Sputtering Method (RF magnetron sputtering법으로 형성된 ZnO 박막의 투명반도체 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • Recently, the growth of ZnO thin film on glass substrate has been investigated extensively for transparent thin film transistor. We have studied the phase transition of ZnO thin films from metal to semiconductor by changing RF power in the deposition process by RF magnetron sputtering system. The structural, electric, and optical properties of the ZnO thin films were investigated. The film deposited with 75 watt of RF power showed n-type semiconductor characteristic having suitable resistivity $-3.56\;{\times}\;10^{+1}\;{\Omega}cm$, carrier concentration $-2.8\;{\times}\;10^{17}\;cm^{-3}$, and mobility $-0.613\;cm^2V^{-1}s^{-1}$ while other films by 25, 50, 100 watt of RF power closed to metallic films. From the surface analysis (AFM), the number of crystal grain of ZnO thin film increased as RF power increased. The transmittance of the film was over 88% in the visible region regardless of the change in RF power.

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices (ITO 나노와이어 기반의 투명 산화물 반도체 광전소자)

  • Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.808-812
    • /
    • 2015
  • Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

Transparent ZnS:Cu, Mn Powder Electroluminescent Device Using AgNW Electrode (은 나노 와이어 전극을 이용한 ZnS:Cu, Mn 전계발광소자)

  • Jung, Hyunjee;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.73-76
    • /
    • 2021
  • This thesis described the optical and electrical properties of the alternating current powder electroluminescent device based on Ag nanowire as a transparent electrode. The Ag nanowire electrode showed the morphology of 20 nm in diameter and 15 ㎛ in length. The transparent electroluminescent devices that were fabricated using the nanomilled ZnS : Cu, Mn phosphor by bar-coating process showed the transmittance of 67%. In order to improve the luminous efficiency, it is necessary to apply the transparent dielectric layer and increase the amount of the nanophosphor while maintaining the transmittance.

High Conductive Transparent Electrode of ITO/Ag/i-ZnO by In-Line Magnetron Sputtering Method (인-라인 마그네트론 스퍼터링 방법에 의한 고전도성 ITO/Ag/i-ZnO 투명전극)

  • Kim, Sungyong;Kwon, Sangjik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • It has increased several decades in the field of Indium Tin Oxide (ITO) transparent thin film, However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials[1]. So far, in order to overcome this disadvantage, we show that a transparent ITO/Ag/i-ZnO multilayer thin film electrode would be more cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report the properties of ITO/Ag/i-ZnO multilayer thin film by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\Box}$ at same visible light transmittance. (minimal point $5.2{\Omega}/{\Box}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.