• Title/Summary/Keyword: Transparent electrode

Search Result 494, Processing Time 0.043 seconds

Optical Simulation of Transparent Electrode for Application to Organic Photovoltaic Cells

  • Jo, Se-Hui;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.440-440
    • /
    • 2012
  • The optical characteristics of transparent electrode with various kind of materials and thickness to be used for organic photovoltaic cells were studied by simulation methodology. It demonstrated that the transmittance varies with the kinds of materials, the number of layers and change in the thickness of each layer. In the case of the structure composed of dielectric/Ag/dielectric, optimized transmittance was higher than 90% at 550 nm and the thickness of the Ag layer was ~10nm. Top and bottom dielectric materials can be changed with different refractive index and extinction coefficient. The relation between the optical transmittance of device and transparent electrode with different refractive indices was discussed as well. By processing numerical simulations, an optimized optical transmittance can be obtained by tunning the thickness and materials of transparent electrode.

  • PDF

Suggestion of Multi-Electrode Type Electronic Paper Film to Can be Used as a Transparent Display (투명 디스플레이로써 활용 가능한 다수전극형 전자종이 필름 제안)

  • Lee, Sang-il;Hong, Youn-Chan;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • A multiple-electrode-type electronic paper film can implement a single color and control the transparency, as it has multiple electrodes in one cell. Therefore, it can be used as a transparent display. In this paper, we explain the structure and driving method of a transparent electronic paper display, and then propose a control method of transmittance. Subsequently, we verify the theory by measuring the transmittance via experiment. Thus, by changing the manner of applying the voltage to three lower electrodes and one upper electrode, transmittance in eight cases could be realized. It was confirmed that the transmittance derived from the experiment could be controlled from a minimum of 6.75% to a maximum of 71.18%.

Transparent ZnS:Cu, Mn Powder Electroluminescent Device Using AgNW Electrode (은 나노 와이어 전극을 이용한 ZnS:Cu, Mn 전계발광소자)

  • Jung, Hyunjee;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.73-76
    • /
    • 2021
  • This thesis described the optical and electrical properties of the alternating current powder electroluminescent device based on Ag nanowire as a transparent electrode. The Ag nanowire electrode showed the morphology of 20 nm in diameter and 15 ㎛ in length. The transparent electroluminescent devices that were fabricated using the nanomilled ZnS : Cu, Mn phosphor by bar-coating process showed the transmittance of 67%. In order to improve the luminous efficiency, it is necessary to apply the transparent dielectric layer and increase the amount of the nanophosphor while maintaining the transmittance.

Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays

  • Oh, Byeong-Yun;Heo, Gi-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • In the present work, a Ni-doped indium zinc oxide (NIZO) film and its multilayers with Ag layers were investigated as transparent conducting electrodes for liquid crystal display (LCD) applications, as a substitute for indium tin oxide (ITO) electrodes. By interposing the Ag layer between the NIZO layers, the loss of the optical transmittance occurred; however, the Ag layer brought enhancement of electrical sheet resistance to the NIZO/Ag/NIZO multilayer electrode. The twisted nematic cell based on the NIZO/Ag/NIZO multilayer electrode exhibited superior electro-optical characteristics than those based on single NIZO electrode and was competitive compared to those based on the conventional ITO electrode. An LCD-based NIZO/Ag/NIZO multilayer electrode may allow new approaches to conventional ITO electrodes in display technology.

Effect of Frit Content in Ag Paste on the Discoloration of Transparent Dielectric in PDP

  • Jeon, Jae-Sam;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1248-1251
    • /
    • 2005
  • In PDP, a transparent dielectric is formed on a front glass substrate so as to cover bus electrodes (Ag). During the fabrication process, sometimes, a transparent dielectric reacts with bus (Ag) electrode in the range of $560-600^{\circ}C$, and the reaction gives the dielectric its yellow coloration, what is called "yellowing phenomena". In this paper, we investigated the reaction between bus electrode and transparent dielectric covered with different frit content in Ag paste.

  • PDF

Fabrication of Graphene/Silver Nanowire Hybrid Electrodes via Transfer Printing of Graphene (그래핀 트랜스퍼 프린팅 공정을 이용한 그래핀/은 나노와이어 하이브리드 전극 제작)

  • Ha, Bonhee;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.572-576
    • /
    • 2017
  • A hybrid transparent electrode was fabricated with graphene and silver nanowires (Ag NWs). Three different processes were used to fabricate the hybrid electrode. Measurements of the sheet resistances, transmittances, and surface roughnesses of the hybrid electrodes were used to identify the optimal fabrication process. The surface roughness of the hybrid electrodes with Ag NWs embedded in a transparent polymer matrix was significantly lower than that of the other hybrid electrodes. A hybrid electrode fabricated by transferring graphene onto Ag NWs after spin-coating the Ag NWs onto the substrate showed the lowest sheet resistance. The transmittance of the hybrid electrodes was comparable to that of Ag NW electrodes.

Investigation of Transparent Electrodes for Solution-Processed Organic Solar Cells (용액법 기반의 유기태양전지 제작을 위한 투명전극 개발)

  • Lee, Sumin;Kang, Moon Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.115-120
    • /
    • 2021
  • In this study, composite transparent electrodes were fabricated either from a conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) or silver nanowire (AgNW). Three transparent electrodes such as PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW were fabricated. As for a transparent electrode, measured sheet resistance values were 89.6, 60.6 and 28.6 Ω/sq, and the transmittance values were 80.2, 82.0 and 83.8% while surface roughness (Rq) values were 4.1, 8.1, 20.4 nm for PEDOT:PSS, PEDOT:PSS and AgNW mixture, and AgNW, respectively. To verify the overall performance of these composite electrodes, we applied these electrodes to the top electrode of the solution-processed organic solar cells (OSCs). PEDOT:PSS provided the best performance with a fill factor (FF) of 51.2% and a photoconversion efficiency (PCE) of 2.2%, while traditional metal top electrode OSC provided FF of 60.5% and PCE of 3.1%.

High-functional Transparent Electrode Design and Shielding Effect (금속산화물 기반의 고성능 투명 전극 및 전자파 차단 효과)

  • Seongwon Cho;Wu-shin Cha;Junheon Ha;Junsik Lee;Jiwon Kang;Nguyen Thanh Tai;Joondong Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.13-17
    • /
    • 2023
  • Functional transparent electrode was achieved by metal oxide-metal-Metal oxide (OMO) structure. Tailoring of metal oxide and metal layers, optically transparent and electrically excellent OMO films were investigated. Silver (Ag) is adopted for the metal layer and Ag oxide (AgO) is reactively formed by flowing O2 gas during the sputtering process. This spontaneous AgO formation from Ag simultaneously provides the good electrical interface with high transparency. Due to the feature of transparent electrode of OMO, it endows the shielding effect (SE) function of electromagnetic interference. Optically transparent and electrically conductive OMO electrode shows the high transmittance (83.7%) and low sheet resistance (6.5 Ω/☐) with SE of 29.54 dB.

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Research on Transparent LED Display with Use of Metal Mesh (메탈메쉬를 활용한 투명 LED 디스플레이에 관한 연구)

  • Hwang, In-Kwan;Roh, Su-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.10-17
    • /
    • 2015
  • Transparent LED display is providing city residents with different attractions via information services and landscape and increasing demand is detected in various areas. It is true that majority of the current demand in transparent electrode material was found and used in ITO but limitations in capacity and economic efficiency led to the need for continuous research and technology development via new materials. As a new material, metal mesh has 85% of the materials to substitute ITO and is widely used due to low-cost and high-conductive rate. Maintenance of transparent LED display utilizing metal mesh compared to existing ITO transparent display is much easier as it not only saves resources but is also economical. Thus the objective of this paper lies in proposing the utilization of metal mesh in transparent LED display prototype to enable economical use of transparent LED display technology and to expand the market and to also propose transparent LED display development method via metal mesh and manufacture a prototype based on the method. And a characteristic comparison test between ITO and metal mesh provides the possibility of using metal mesh as a transparent electrode material in transparent LED display development.