• 제목/요약/키워드: Transparent conductive oxide films

Search Result 186, Processing Time 0.037 seconds

High aspect ratio Zinc Oxide nanorods for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.2-235.2
    • /
    • 2015
  • The front transparent conductive oxide (TCO) films must exhibit good transparency, low resistivity and excellent light scattering properties for high efficiency amorphous silicon (a-Si) thin film solar cells. The light trapping phenomenon is limited due to non-uniform and low aspect ratio of the textured glass [1]. We present the low cost electrochemically deposited uniform zinc oxide (ZnO) nanorods with various aspect ratios for a-Si thin film solar cells. Since the major drawback of the electrochemically deposited ZnO nanorods was the high sheet resistance and low transmittance that was overcome by depositing the RF magnetron sputtered AZO films as a seed layer with various thicknesses [2]. The length and diameters of the ZnO nanorods was controlled by varying the deposition conditions. The length of ZnO nanorods were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The uniform ZnO nanorods showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nanorods and much higher aspect ratios degraded the light scattering phenomenon. Therefore, we proposed our low cost and uniform ZnO nanorods for the high efficiency of thin film solar cells.

  • PDF

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

Optical Properties of VO2 Thin Film Deposited on F:SnO2 Substrate for Smart Window Application (스마트윈도우 응용을 위한 FTO 기판 위에 증착된 VO2 박막의 광학적 특성)

  • Kang, So Hee;Han, Seung Ho;Park, Seung Jun;Kim, Hyeongkeun;Yang, Woo Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.215-218
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) is an attractive material for smart window applications where the transmittance of light can be automatically modulated from a transparent state to an opaque state at the critical temperature of ${\sim}68^{\circ}C$. Meanwhile, F : $SnO_2$ (F-doped $SnO_2$, FTO) glass is a transparent conductive oxide material that is widely used in solar-energy-related applications because of its excellent optical and electrical properties. Relatively high transmittance and low emissivity have been obtained for FTO-coated glasses. Tunable transmittance corresponding to ambient temperature and low emissivity can be expected from $VO_2$ films deposited onto FTO glasses. In this study, FTO glasses were applied for the deposition of $VO_2$ thin films by pulsed DC magnetron sputtering. $VO_2$ thin films were also deposited on a Pyrex substrate for comparison. To decrease the phase transition temperature of $VO_2$, tungsten-doped $VO_2$ films were also deposited onto FTO glasses. The visible transmittance of $VO_2$/FTO was higher than that of $VO_2$/pyrex due to the increased crystallinity of the $VO_2$ thin film deposited on FTO and decreased interface reflection. Although the solar transmittance modulation of $VO_2$/FTO was lower than that of $VO_2$/pyrex, room temperature solar transmittance of $VO_2$/FTO was lower than that of $VO_2$/pyrex, which is advantageous for reflecting solar heat energy in summer.

Depositon of Transparent Conductive Films by a DC arc Plasmatron

  • Penkov, O.V.;Plaksin, V. Yu.;Joa, S.B.;Kim, J.H.;LEE, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.480-480
    • /
    • 2010
  • In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1,500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photo-electron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Sheet resistance of 4 Ohms cm was achieved after the deposition and 30 min annealing in the hydrogen at $350^{\circ}C$. Elevation of the substrate temperature during the deposition process up to $350^{\circ}C$ leads to decreasing of the film's resistance due to rearrangement of the crystalline structure.

  • PDF

High Transparent Planar Dipole Antenna using Ionized Salt-water of ASA Structure (이온화된 소금물을 이용한 ASA 구조의 고 투명 평면형 다이폴 안테나)

  • Phan, Duy Tung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.492-498
    • /
    • 2021
  • This feasibility study evaluated an optically transparent planar antenna using liquid salt-water as the conducting material. The most significant reason behind using liquid salt-water for transparent antenna applications is its excellent average optical transparency (OTav) (> 95% at a salinity of 40 ppt) compared to other typical solid transparent thin-film electrodes, such as indium tin oxide (ITO:> 73%) or multi-layer films (MLF: > 78%). Each conductive arm of the proposed dipole is constructed from a salt-water layer held between two clear planar acrylic layers (��r = 2.61, tan�� = 0.01, OTav > 90%) (acrylic/salt-water/acrylic; ASA) due to surface tension. To examine the electrical and optical properties of the ASA structure, the surface tension was measured to determine the thickness of the salt-water layer that finalized its sheet resistance and OTav. The average gain and efficiency of the antenna were 1.72 dBi and 74%, respectively, in the operating UHF (Ultra high frequency) band (470-771 MHz). Therefore, the proposed antenna can be a good candidate for applications as a transparent planar antenna using salt-water.

Effect of Substrate Temperature and O2 Introduction With ITO Deposition by Electron Beam Evaporation on Polycyclic Olefin Polymer (전자빔으로 폴리사이클릭 올레핀 기판에 ITO 증착시 기판온도 및 산소 도입의 영향)

  • Ahn, Hee-Jun;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.742-748
    • /
    • 2005
  • Transparent conductive indium-tin oxide (ITO) films are widely used as transparent electrodes for flat panel displays. Many of the ITO films for practical use have been prepared by magnetron sputtering, chemical vapor deposition, electron beam evaporation, etc. An oxide target composed of 10 wt% $SnO_2$ and 90 wt% $In_2O_3$ has been deposited onto polycyclic olefin polymer (POP) substrate by electron beam evaporation. POP has a higher glass transition temperature ($Tg=330^{\circ}C$) than other conventional polymers. In this study, the effects of substrate temperature and the $O_2$ introduction flow rate were investigated in terms of physical, electrical and optical properties of deposited ITO films. We investigated the effects of processing variables such as substrate temperature and the oxygen introduction flow rate. The best electrical and optical properties of deposited ITO films obtained from this study were electrical resistivity value of ${\rho}=1.78{\times}10^{-3}{\Omega}{\cdot}cm$ and optical transmittance of about 85% at 8 sccm (Standard Cubic Centimeter per Minute) $O_2$ introduction flow rate, $5{\AA}/sec$ deposition rate, $1000{\AA}$ deposited ITO thickness and $200^{\circ}C$ substrate temperature.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF