• 제목/요약/키워드: Transparent Pattern

검색결과 140건 처리시간 0.025초

고정렬 Pt 라인 및 크로스-바 미세패턴의 구조적 안정성 연구 (Structural Stability for Pt Line and Cross-Bar Sub-Micron Patterns)

  • 박태완;박운익
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.510-514
    • /
    • 2018
  • This study discusses and demonstrates the structural stability of highly ordered Pt patterns formed on a transparent and flexible substrate through the process of nanotransfer printing (nTP). Bending tests comprising approximately 1,000 cycles were conducted for observing Pt line patterns with a width of $1{\mu}m$ formed along the direction of the horizontal (x-axis) and vertical (y-axis) axes ($15mm{\times}15mm$); and adhesion tests were performed with an ultrasonicator for a period greater than ten minutes, to analyze the Pt crossbar patterns. The durability of both types of patterns was systematically analyzed by employing various microscopes. The results show that the Pt line and Pt crossbar patterns obtained through nTP are structurally stable and do not exhibit any cracks, breaks, or damages. These results corroborate that nTP is a promising nanotechnology that can be applied to flexible electronic devices. Furthermore, the multiple patterns obtained through nTP can improve the working performance of flexible devices by providing excellent structural stability.

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.

전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치 (Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes)

  • 김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

Synthesis of direct-patternable ZnO film incorporating Pt Nanoparticles

  • Choi, Yong-June;Park, Hyeong-Ho;Reddy, A.Sivasankar;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.369-369
    • /
    • 2007
  • ZnO film has been investigated during several decades because it has excellent optical property like a transmittance among the range of visible light for using transparent conducting oxide (TCO) films. But ZnO film has not enough conductivity for applying to TCO devices. Therefore we synthesized platinum nanoparticles and they incorporated into ZnO due to improve the electrical property of ZnO film by sol-gel synthesis method. Also, we fabricated photosensitive ZnO thin film containing Pt nanoparticles by sol-gel process and spin-coating for using photochemical solution deposition. Photosensitive ZnO film could carry out the direct-pattern which allow the etching process to be convenient. The optical and electrical properties of ZnO film with or without various atomic percent of Pt nanoparticles annealed at various temperatures were investigated by using UV-Vis spectroscopy and 4-point probe method, respectively. We characterized the ZnO thin film containing Pt nanoparticles using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.

  • PDF

용융잉크 적층공정을 이용한 내부채색형상을 포함한 광조형물 제작에 관한 연구 (A Study on Fabrication of Internally Colored Shape in Stereolithography Parts using Molten Ink Deposition Process)

  • 박종철;박석희;강상일;양동열
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.98-104
    • /
    • 2010
  • Rapid Prototypes with internally colored objects are convenient by visualizing. A rapid prototyping method has been developed to fabricate mono-colored or multi-colored objects. In this work, a new process was proposed that can fabricate internally visible colored 3D objects in stereolithography parts. The process consists of projection stereolithography process using transparent photocurable resin for outer shapes and molten ink deposition process using molten solid ink for internal shapes. In molten ink deposition process, molten solid ink could be deposited uniformly in a designed pattern. To make molten solid ink uniform over a designed region, parametric study through a patterning solid ink was performed. By laminating resin and solid ink in sequence, the process can make colored 3D objects in StereoLithography(SL) parts. The practicality and effectiveness of the proposed process were verified through fabrication of colored basic 3D objects in SL parts.

반응성 dc 미그네트론 스퍼링법으로 제조된 IPO박막에 미치는 산소분압의 영향 (Effects of Oxygen Partial Pressure on ITO Thin Films PrePared by Reactive dc Magenetron Sputtering)

  • 신성호;신재혁;박광자;김현우
    • 한국표면공학회지
    • /
    • 제31권3호
    • /
    • pp.171-176
    • /
    • 1998
  • Transparent conducting ITO (Indium Tin Oxide) thin films were prepared on soda lime glass by reactive dc magnetron sputtering mothod. The maaterial properties were measured by the X-ray diffraction meter (XRD) and atomic force microscopy (AFM) scanning. As a resuIts, the (400) park for $O_2 gas rate 2% grows uniquely as the preferred orientaon. However, the (400) peak exists at $O_2 gas rate 5% as well as the (222) peak appears abruptly as the main orietation. Both <100> and <111> grain alignments are consisted simultaneously in the XRE pattern of ITO thin films. The electrical charcteristics were esimated by the electrical resistivity, optical transmission, and Hall mobillty, ect. The resistivity of ITO thin film deposited at 4cm from the substrate center is increased from $2\times10^-4$ to $8\times10^-4\Omega$cm as a function of $O_2$ gas pressure (0~5%). The optical transmission curves with a rising of $O_2$ gas rate become shifted into longer wavelength range.

  • PDF

실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성 (Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode)

  • 김경민;조영준;장효식
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

SPIV 기법을 이용한 비접촉 그리퍼에 의해 공중부양된 유연판의 3차원 변형 특성 측정 (Measurements of 3-D Deflection Characteristics of a Flexible Plate Levitated by Non-Contact Grippers Using SPIV Method)

  • 김재우;김준현;이영훈;성재용
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.54-62
    • /
    • 2021
  • This study has investigated the 3-D deflection characteristics of a flexible plate levitated by non-contact grippers using SPIV method. The measuring instrument consisted of a flexible plate located under four non-contact grippers and two cameras at the bottom of a transparent acrylic plate. Measurements were made on two materials (PVC and PC) for the plate with 50×50 cm2 area and 1 mm thickness. The deflection characteristics and flatness vary depending on the plate material, the gripper position and the air flow supplied to the gripper. For the material of PVC, the overall defection is convex. As the gripper position goes outward from the plate center, the upmost bending point also moves to the outside of the plate with the flatness increasing. However, the air flow rate does not affect the deflection pattern except for the small increase of flatness. For the material of PC, the shape of deflection changes from convex to concave as the gripper position goes out. The flatness is the highest at the point of transition from convex to concave, but the air flowrate has little effect on the flatness.

Effect of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films

  • Kumar, Davinder;Singh, Avtar;Kaur, Navneet;Katoch, Apoorva;Kaur, Raminder
    • 한국재료학회지
    • /
    • 제32권5호
    • /
    • pp.249-257
    • /
    • 2022
  • Transparent thin films of pure and nickel-doped ZrO2 are grown successfully by sol-gel dip-coating technique. The structural and optical properties according to the different annealing temperatures (300 ℃, 400 ℃ and 500 ℃) are investigated. Analysis of crystallographic properties through X-ray diffraction pattern reveals an increase in crystallite size due to increase in crystallinity with temperature. All fabricated thin films are highly-oriented along (101) planes, which enhances the increase in nickel doping. Scanning electron microscopy and energy dispersive spectroscopy are employed to confirm the homogeneity in surface morphology as well as the doping configuration of films. The extinction coefficient is found to be on the order of 10-2, showing the surface smoothness of deposited thin films. UV-visible spectroscopy reveals a decrease in the optical band gap with the increase in annealing temperature due to the increase in crystallite size. The variation in Urbach energy and defect density with doping and the change in annealing temperature are also studied.