• 제목/요약/키워드: Transparent Insulation

검색결과 33건 처리시간 0.025초

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향 (Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems)

  • 전삼채;이창수;나수연;허종철;최동호
    • 한국태양에너지학회 논문집
    • /
    • 제22권3호
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석 (Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods)

  • 강준구;김진희;김준태
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.

로이유리의 전도성 금속박막을 이용한 발열유리 제작에 관한 연구 (A study on the fabrication of heatable glass using conductive metal thin film on Low-e glass)

  • 오재곤
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.105-112
    • /
    • 2018
  • 본 논문은 로이유리(Low emissivity glass) 표면에 증착되어 있는 금속박막의 전도 특성을 이용하여 발열유리(Heatable glass)를 제작하는 방법에 대해 제안한다. 로이유리의 발열량은 로이유리 표면저항에 의한 주울(Joule) 열에 의존하므로 소재의 표면저항을 측정함으로써 예측 및 설계가 가능하다. 본 연구에서는 저방사층이 11nm인 소프트로이유리 시료에 각 50mm 간격으로 은(Ag) 전극을 형성시키고, 4단자법으로 면저항을 측정하여 로이유리의 소비전력과 발열량을 예측한 후에, 제작 및 실험을 통해 발열성능을 확인하였다. 기존의 발열유리 제작방법은 크게 두 가지로 일반유리(Normal glass)에 니크롬(Nichrome) 열선을 삽입하는 방법과, 일반유리에 전도성 투명박막을 증착하는 방법이 있다. 니크롬 열선 삽입 방식은 발열성능은 우수하나 유리 고유의 투명성을 저해하고, 전도성 투명박막을 증착하는 방법은 투명성은 양호하나 공정이 복잡하여 실용성이 저하된다. 본 논문에서는 주로 건축물의 단열효과 향상을 위해 사용되는 로이유리를 이용하여 로이유리 전면에 코팅되어 있는 전도성 금속박막에 레이저 빔을 조사하여 원하는 발열성능을 가지는 발열유리를 제작하는 방법을 제안한다. 제안된 방법은 기존의 니크롬 열선을 삽입하는 방법에 비해 투명성이 양호하고, 전도성 투명박막을 증착하는 방법에 비해 제작과정이 보다 수월함을 확인하였다. 아울러, 레이저를 조사하여 로이유리의 표면 박막을 패터닝(Patterning) 하는 형태에 따른 발열특성의 비교와 로이유리에 적합한 레이저 출력조건을 제시하고자 한다.

실측실험과 3차원 정상상태 열전달 해석을 통한 발열유리의 온도 및 전열량 분석 (Analysis of Temperature and Total Heat of Heated Glass through Experimental Measurement and Three-Dimensional Steady-State Heat Transfer Analysis)

  • 이도형;윤종호;오명환
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.111-116
    • /
    • 2015
  • Heat loss from windows and condensation occuring on its surface due to its lower insulation value causes much discomfort to occupants. In this study, Heated glass was used to make a basic study on prevention of condensation on glass surface for its heating functionality through experimental measurement and simulation analysis of total heat flux on the interior and exterior surface of glass. Error between experimental results and three dimensional steady-state heat transfer analysis were caused firstly, beacuse in the experimental chambers, cold chamber and steady temperature and humidity chamber, air temperature setting was not constant but rather ON/OFF control, and secondly, due to error rate in heat flux meter due to heat flux direction even in stable conditions.

인플래터블 패션의 조형적 특성 연구 (A study on the formative features of the inflatable fashion)

  • 손수민
    • 복식문화연구
    • /
    • 제21권4호
    • /
    • pp.521-534
    • /
    • 2013
  • This study aims to identify the formative features of inflatable fashion that has changed its form or fulfilled specific functions by inserting air between fabrics or between clothes and the human body. Images of inflatable fashion images after the 1990s were collected from the literature and internet data and were analyzed based on the formative features of inflatable design. Through this analysis, it was determined that there were four formative features of inflatable fashion: First, inflatable fashion has functionality. General fashion also has functionality, but inflatable fashion has expanded functionalities such as an air bag effect or insulation due to injected air. Second, the formative potential. Inflatable fashion can be changed into different forms depending on the amount of air injected. Light-weighted air holds up the material of the clothes. So new forms that are different from conventional fashion, which gives inflatable fashion its formative potential, can be suggested. Third, aesthetic expansion. Inflatable fashion when its volume is expanded expresses the beauty of scale, or expresses a voluptuous beauty when part of human body is exaggerated. Fourth, it has an unconstructive characteristic. Space that is visible due to the transparent material of inflatable fashion expresses the intention of the designer to fulfill an unconstructive concept. In conclusion, the formative features of inflatable design have formative significances : practicality, aesthetic significance, semantics and technical significance.

반복적인 충격하중을 받은 PC 플라스틱 재료의 변형 및 수명 평가 (Deformation and Life Evaluation of PC Plastic Materials Subjected to Repeated Impact Loads)

  • 이진경
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.611-616
    • /
    • 2020
  • Polycarbonate (PC) materials having electrical insulation properties, are thermoplastic material and are easily processed, have excellent strength and heat resistance characteristics, and also have transparent and hard characteristics. In this study, we tried to derive the ε-N curve of strain-life, which shows the relationship between the strain characteristics and the life of the material when repeated impact loads are applied to the PC plastic material. As the impact load increased to 3.0kg, 4.0kg, 5.0kg, and 6.0kg, the strain also increased linearly to 0.033, 0.041, 0.046, and 0.055. At 3.0kg of mass impact, the test piece broke with 12000 impact cycles, 8400 times at 3.5kg, 7400 times at 4.0kg, 6600 times at 4.5kg, 4700 times at 5.0kg, 3000 times at 5.5kg, and 1000 times at 6.0kg. The number of fractures exponentially decreased as the load gradually increased. Using these results, an ε-N curve for PC plastic was derived.

투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구 (A study on the Optimum Design Configuration of Passive Solar TI-wall system)

  • 김병수;윤종호;윤용진;백남춘
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

Greenhouse Bulk건조기에 의한 태양열이용에 관한 연구 (제I보) (Solar Energy Utilization in a Greenhouse Bulk Curing and Drying System(I))

  • 진정의;이승철;이상하
    • 한국연초학회지
    • /
    • 제2권1호
    • /
    • pp.61-67
    • /
    • 1980
  • 韓國煙草硏究所, 大邱試驗場(北緯35$^{\circ}$49')에서 1979年 透明한 fiber glass로 지은 円柱型 greenhouse(4.50$\times$3.83$\times$2.80m)內에 乾燥室의 外壁 및 天井을 Polyurethan에 함석을 입혀 黑色 paint로 coating한 板을 heat absorber겸 斷熱板으로, 乾燥室 양편에 各各 4.5㎥의 자갈을 넣은 gravel heat storage system 그리고 greenhouse內의 加熱된 空氣를 練燒室로 誘導할 수 있는 air duct를 설치한 8.25㎥의 太陽熱 直接利用 方式의 Bulk 乾燥材와 同一한 크기의 Bulk 乾燥材를 比較 試驗하였다. 乾燥期間中 外溫 30.5~35.5$^{\circ}C$, 總日射量 1004.2~1436.2 cal/$\textrm{cm}^2$의 條件下에서 3回 乾燥 試驗한 結果, 天井 heat absorber의 最高溫度는 89$^{\circ}C$이였으며, 練燒室로 吸入되는 空氣의 最高溫度는 64$^{\circ}C$이며 평균 46$^{\circ}C$로서 外溫에 비하여 18$^{\circ}C$가 높았고, 慣行Bulk乾燥材에 비하여 25%의 燃料가 節減되였다.

  • PDF

평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향 (A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors)

  • 전문헌;윤석범;추교명
    • 대한기계학회논문집
    • /
    • 제8권2호
    • /
    • pp.145-153
    • /
    • 1984
  • 본 연구에서는 먼저 집열기의 열성능에 관한 가장 전형적인 Hottel-Whillier- Bliss의 모델을 사용하여 모의 실험을 수행하였다. 모의 실험에 사용한 집열기의 주 요 변수는 덮개 유리의 수(N), 집열판의 방사율(.epsilon.$_{p}$), 집열판의 흡수율(.alpha.$_{p}$T),집열기 단위 면적당의 유량(G), 집열기 단열재의 $L_{b}$/ $K_{b}$, 집열기 경사각 (S),일사량(I) 등이며 이들 집열기 변수의 대표치(typical values)를 중심으로 각 변 수의 값을 변화시켜서 여기에 따른 집열기 효율 곡선의 변화를 조사하였다. 모의 실 험결과와 비교하고, 모의 실험에 사용한 수학적 모델이 집열기의 열성능을 평가하는 데에 적합한가를 확인하고, 운전중에 인위적으로 그 값을 조절할 수 있는 운전 변수중 특히 유량(G)의 변화에 따른 집열기 효율변화와 최적유량의 범위를 동시에 실험적으로 조사하기 위하여, 액체 가열식 집열기 시험장치의 회로를 보완하여 실제 태양 아래에 서 실험을 수행하였다.