• Title/Summary/Keyword: Transparent Glass-ceramics

Search Result 19, Processing Time 0.083 seconds

A Study on the Transparent Glass-Ceramics on the MgO-$Al_2O_3$-$SiO_2$ System (투명 결정화유리에 관한 연구 MgO-$Al_2O_3$-$SiO_2$계에 대하여)

  • 박용완;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.406-414
    • /
    • 1991
  • The composition of base glass was selected as MgO 8, Al2O3 24, SiO2 68 in weight percent. TiO2 and ZrO2 were added to the base glass to investigate their effects as nucleating agents. In the case of ZrO2 addition, the optimum temperature for nucleation, which was related to the precipitation of tetragonal ZrO2, was 80$0^{\circ}C$. The optimum growth condition for the crystal was 87$0^{\circ}C$ for 8 hrs, and the major crystal phases precipitated in the samples were $\beta$-quartz ss. and mullite. The light transmissivity turned out to be around 80 per cent. On the other hand, when the TiO2 was added, it was difficult to determine the nucleating temperature, because the samples turned easily into translucency during the heat treatment. Therefore, it was almost impossible to retain transparency in the samples. The light transmissivity was below 30 per cent.

  • PDF

Nano-crystallization Behavior and Optical Properties of Na2O-Nb2O5-TeO2Glasses (1) (Na2O-Nb2O5-TeO2계 유리의 광학적 성질과 나노-결정화거동 (1))

  • 김현규;류봉기;차재민;김병관;이재성
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1078-1084
    • /
    • 2003
  • In order to develop a new type of nonlinear optical materials or photocatlaysts, Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses were prepared using conventional melt quenching method, and the crystallization behaviors and optical properties of these glasses was investigated. The optical and physical properties for Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses are: refractive index, n=2.04$\pm$0.04; density, p (g/㎤)=4.87$\pm$0.58; optical energy band of the transmission cut-off wavelength, E$_{0}$ (eV)=3.14$\pm$0.04. The transparent glass ceramics consisting of the nanocrysatls were obtained when the Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glass was first heat-treated at 3$50^{\circ}C$ for 1 h and than at 40$0^{\circ}C$ for 1 h. A cubic crystalline phase consisting of the nano-crysatls transforms into a stable phase at temperature above 47$0^{\circ}C$ for 1 h.

A Study of Sintering Behavior and Crystallization in Li2O-Al2O3-SiO2 (LAS) Glass System by RSM (RSM 법에 의한Li2O-Al2O3-SiO2 (LAS) 유리의 소결 거동과 결정화에 대한 연구)

  • Lee, Kyu-Ho;Kim, Young-Seok;Jung, Young-Joon;Kim, Tae-Ho;Seo, Jin-Ho;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents results and observations obtained from a study of sintering behavior and crystallization in $Li_2O-Al_2O_3-SiO_2$ (LAS) Glass by screen printing method. The variable experimental conditions were determined carefully by Thermal-Mechanical Analyzer (TMA), Differential Thermal Analyzer (DTA) for setting the optimum transparent sintering conditions in LAS glass system, $10.5Li_2O-14.7Al_2O_3-58.1SiO_2-16.7B_2O_3(wt%)$, such as glass-ceramics which usually have low crystallization temperatures. Crystallization glasses generated during sintering was observed from diffraction patterns by X-Ray Diffraction (XRD), transmittance by UV-Vis spectrometer. Finally, the optimum sintering condition of LAS glass and the relation between factors and results in several sintering conditions were given by using Response Surface Methodology (RSM). From this study, we confirmed that crystallization interrupted densification during glass powder sintering. Furthermore, we observed that main effect of factors in glass powder sintering with concurrent crystallization depended on experimental conditions from main effects plot by MINTAB-14.

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

Effect of Heat Treatment on the Morphology and Transparency of Thick Inorganic-Organic Hybrid Films Prepared by the Electrophoretic Sol-Gel Deposition of Polyphenylsilsesquioxane Particles

  • Hasegawa, Koichi;Katagiri, Kiyofumi;Matsuda, Astunori;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 2000
  • Thick inorganic-organic hybrid films were prepared on ITO-coated glass substrates by the electrophoretic sol-gel deposition of polyphenylsilsesquioxane particles. The morphology of the deposited films changed from the aggregate of the spherical particles to monolith by heat treatment at temperatures higher than $200^{\circ}C$. Transparency of the films was significantly improved accompanied by the morphological change of the particles. The degree of the morphological change was governed by two factors; maximum heat treatment temperature and heating rate. Transparent thick films of ca. 3$\mu\textrm{m}$ in thickness were obtained only by heat treatment at $400^{\circ}C$ for 2h with rapid heating from room temperature to $400^{\circ}C$. These films obtained were strongly adhered to the ITO-coated glass substrates and has a very smooth surface.

  • PDF

Effect of Seeding Layers on Preparation of PLZT Thin Films by Sol-Gel Method

  • Hirano, Tomio;Kawai, Hiroki;Suzuki, Hisao;Kaneko, Shoji;Wada, Tatsuya
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • $(Pb_xLa_{1-x}) (Zr_yTi_{1-y})O_3$ (PLZT) thin films with electrooptic effect are promising for the optical application such as display or light shutter. However, it is difficult to use inexpensive and transparent glass substrates because the conventional process for preparation of PLZT requires temperatures above $600^{\circ}C$. In order to deposit a perovskite PLZT thin films at low processing temperatures through alkoxide route, we have offered several seeding processes which reduce the activation energy for crystallization. In this study, we optimized the stacking structure of multilayered PLZT for obtaining single phase perovskite at lower temperatures. As a result, ferroelectric PLZT thin films with different compositions were successfully prepared at a temperature as low at $500^{\circ}C$.

  • PDF

Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet (워터젯을 이용한 블라스팅 유리 마이크로 채널의 표면거칠기 개선)

  • Son, Sung-Gyun;Han, Sol-Yi;Sung, In-Ha;Kim, Wook-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1159-1165
    • /
    • 2013
  • Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

Restoration and Stability of the Glass Sarira Bottle (Treasure No. 1925) from the Sarira Reliquaries Commissioned by Yi Seonggye, Excavated from Geumgangsan Mountain (보물 제1925호 금강산 출토 이성계 발원 사리장 엄구 내 유리제 사리병의 복원 및 안정성 연구)

  • Na, Ahyoung;Hwang, Hyunsung
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.25-34
    • /
    • 2021
  • 3D printing technology has been actively applied for the restoration of cultural properties. However, its application to the restoration of glass cultural properties has not yet been reported and thus requires further study. In this study, 3D printing technology was used to restore a defective part of a glass sarira bottle that forms an element of a series of sarira reliquaries commissioned by Yi Seonggye (known as King Taejo after founding the Joseon Dynasty) that was excavated from Geumgangsan Mountain (designated as Treasure No. 1925) and is currently housed at the National Museum of Korea. The defective area was reproduced using 3D printing and the printed reproduction was reproduced again using an epoxy resin. This latter piece was used as the restoration component rather than the 3D printed element. After the completion of the conservation treatment, the materials used for the 3D printing were compared with transparent materials used to restore ceramics to evaluate their usability and stability. A total of five specimens were produced, including from photocurable resin made by a stereo lithography apparatus (SLA), epoxy resin, acrylic resin, and more. They were exposed to UV for 96 hours to test for yellowing. Of the two specimens made of photocurable resins and exposed to UV, one was sprayed with a UV blocking agent but the other was exposed as-is. The UV exposure test showed that the specimen made by the SLA and sprayed with a UV blocking agent and the specimen made of epoxy resin were stable in terms of yellowing with a change in the b-value was less than 1. They are thus considered to be suitable materials for the restoration of glass cultural properties. Such glass cultural properties are often diverse in shape and their restoration can be difficult as they generally consist of a range of complex parts that hamper restoration. In this regard, diverse materials should be considered when selecting materials for the restoration of glass cultural properties.