• 제목/요약/키워드: Transparent Electrodes

검색결과 291건 처리시간 0.033초

Study of ITO/ZnO/Ag/ZnO/ITO Multilayer Films for the Application of a very Low Resistance Transparent Electrode on Polymer Substrate

  • Han, Jin-Woo;Han, Jeong-Min;Kim, Byoung-Yong;Kim, Young-Hwan;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.798-801
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided (ITO)/zinc oxide (ZnO)/Ag/zinc oxide (ZnO)/ITO. With about 50 nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550 nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

투명 유전체 (PbO-B2O3-SiO2-Al2O3 계)와 Ag 전극과의 반응에 의한 Ag+과 Sn2+의 거동 (Behavior of Ag+ and Sn2+ After Reaction Between the Transparent Dielectric PbO-B2O3-SiO2-Al2O3 and Ag Electrodes)

  • 홍경준;박준현;허증수;김형준
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.347-352
    • /
    • 2002
  • A transparent dielectric of the $PbO-B_2O_3-SiO_2-A1_2O_3$ system which was a low melting glass has been used for PDP (Plasma Display Panel), but it has a problem which is a reaction to be occurred between a transparent dielectric layer and electrodes (Ag, ITO) after firing. This research was conducted for ion migration of $Ag^+\$ and $Sn^ {2+}$ during firing three different frits of low melting glass. The result showed that yellowing phenomena occurred through a chemical reaction between $Ag^+\$and $Sn^ {2+}$ at 550~58$0^{\circ}C$ for 20~60 min. In addition, it was confirmed that the migration of $Sn^{2+}$ from ITO electrode made a strong effect on the yellowing phenomena.

솔젤법으로 제작한 ZnO 박막의 광전도특성 연구 (Transparent conducting ZnO thin films deposited by a Sol-gel method)

  • 김경태;김관하;김종규;우종창;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.320-320
    • /
    • 2007
  • Nowadays, ZnO thin films are investigated as transparent conductive electrodes for use in optoelectronics devices including flat displays, thin films transistors, solar cells because of their unique optical and electrical properties. For the use as transparent conductive electrodes, a film has to have low resistivity, high absorption in the ultra violent light region and high optical transmission in the visible region. Different technologies such as electron beam evaporation, chemical vapor deposition, laser evaporation, DC and RF magnetron sputtering and have been reported to produce thin films of ZnO with adequate performance for applications. However, highly transparent and conductive doped-ZnO thin films deposited by a metal-organic decomposition method have not been reported before. In this work, the effect of dopant concentration, heating treatment and annealing in areducing atmosphere on the structure, morphology, electrical and optical properties of ZnO thin films deposited on glass substrates by a Sol-gel method are investigated.

  • PDF

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF

Highly Conductive Flexible Transparent Electrode Using Silver Nanowires & Conducting Polymer

  • Seo, Dong-Min;Kim, Sang-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.547-547
    • /
    • 2012
  • As displays become larger and solar cells become cheaper, there is an increasing need for low-cost transparent electrodes. Intensive effort has been made to replace ITO (Indium Tin Oxide) based transparent electrode with cheap and flexible ones. Among those, silver nanowires have got limelight because of its great conductivity and flexibility. Even though the electric property of the Ag nanowire based transparent electrode surpassed ITO, the optical property needs to be improved (lower transmittance, higher haze). Here, we reported transparent electrode based on Ag nanowires and conducting polymer to improve optical properties. The Ag nanowires are coated onto PET films and the resulting transparent electrode film shows $200ohm/{\Box}$ resistance and > 90% optical transmittance.

  • PDF

Fabrication of All-Solution Processed Transparent Silver Nanowire Electrode Using a Direct Printing Process

  • 백장미;이린;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.641-641
    • /
    • 2013
  • We report the transparentsilver nanowire electrode fabricated by a direct printing process, liquid-bridge-mediated nanotransfer molding. We fabricated silver nanowire arrays by liquidbridge- mediated nanotransfer molding using the silver nanoparticle ink and PEDOT:PSS polymer. Weinvestigated the formation of silver nanowire arrays by SEM and transmittance of the transparent silver nanowire electrode. We also measured the conductivity to confirm the potential of our approach.

  • PDF

Highly Efficient Dye-Sensitized Solar Cells with Nonplatinized Graphene Oxide/Metal

  • 전용석;이동욱;김정우;임정민;서승혁;한민수;한치환;신현석;전용석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • A key technological issue related to the implementation of dye-sensitized solar cells (DSSCs) is the replacement of Pt at the counter electrodes with an inexpensive and electro-chemically stable alternative. Carbon based nanomaterials could be promising candidates, but in practice they exhibit inadequate device performance. Here, we report very thin graphene oxide (GO)/metal hybrid films as transparent counter electrodes for high-efficiency DSSCs. Transparent GO/Pt and GO/Au hybrid films showed cell efficiencies of 9.2 and 9.0%, respectively (improvements of 9.5 and 7.1% over conventional Pt counter electrodes). More interestingly, highly stable DSSCs with GO hybrid films from relatively inexpensive metals such as Cu and Ni have been demonstrated with efficiency values comparable to Pt counter electrodes. The results reported in this study should enable low-cost fabrication of DSSCs because it allows the use of relatively inexpensive metals such as Au, Cu, Ni, and Ag that could not be previously employed in DSSCs with iodide/tri-iodide electrolyte due to corrosion.

  • PDF

DC 마그네트론 스퍼터링법으로 증착된 초박형 Al 박막의 투명전극 적용성 연구 (Ultra-thin aluminum thin films deposited by DC magnetron sputtering for the applications in flexible transparent electrodes)

  • 김대균;최두호
    • 마이크로전자및패키징학회지
    • /
    • 제25권2호
    • /
    • pp.19-23
    • /
    • 2018
  • 광전소자용 투명전극으로 적용하기 위한 초박형 Al 박막에 대한 기초연구를 수행하였다. 유리 기판 상에 3-12 nm의 두께를 가지는 Al 박막을 형성하였으며, 박막의 두께가 7 nm 이상일 때부터 면저항이 측정되었으며 두께가 증가할 때 면저항이 점진적으로 감소하였다. 박막 내 그레인 크기(Grain size)는 두께가 증가할수록 비례하여 증가하였다. 광 투과도의 경우 가시광선영역(380~770 nm) 파장 기준으로, 3 nm 박막 두께에서 평균 85%의 투과도가 측정된 데 반하여, 4, 5 nm 두께에서 평균 50, 60%로 급격하게 감소되기 시작하며 그 이후 두께 증가에 따라 투과도가 점진적으로 감소하였다. 본 연구결과는 향후 Oxide/Metal/Oxide(OMO) 구조의 고투과, 저저항 투명전극 적용을 위한 기초 결과로 활용될 것으로 기대된다.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF