• Title/Summary/Keyword: Transparent Electrodes

Search Result 291, Processing Time 0.025 seconds

Graphene Derivatives for Bioapplications: Cellular Response to Graphene and Behaviors of Mammalian Cells

  • Min, Dal-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.7-7
    • /
    • 2011
  • Graphene and graphene derivatives have attracted enormous attention from various research fields for applications in electronic devices, transparent electrodes, biosensors, drug delivery system and surface coatings. In the viewpoint of chemist, the chemical structure of graphene derivatives seems intriguing but detailed structures are being revealed only recently while engineering approaches for various applications are being executed very actively. In addition, cytotoxicity and mammalian cellular responses to graphene have not thoroughly investigated yet in spite of the importance in bio-applications and environment. In this talk, I'll introduce recent studies which report cytotoxicity and behaviors of mammalian cells when the cells are exposed to graphene (as well as some bio-applications of graphene), especially to get closer to answers to these questions, "how we understand and how/why we use graphene in biotechnology".

  • PDF

Study of Plasma Technology to Obtain Environmental and Thermal Stability of AgNW Transparent Electrodes (은나노선 투명전극의 환경적, 열적 안정성 확보를 위한 플라즈마 응용 기술 연구)

  • Jeong, Seong-Hun;An, Won-Min;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.201-202
    • /
    • 2015
  • 최근 Indium Tin Oxide (ITO)를 대체하기 위해 많은 각광을 받고 있는 AgNW 투명전극에 대한 연구가 활발하게 진행되고 있으나, AgNW의 경우 기존 용액공정을 활용한 분산과 코팅으로 AgNW의 네트워크 형성시 접촉에 대한 문제점으로 전기적으로 균일한 면저항을 얻기 어려운 단점이 잘 알려져 있다. 또한 AgNW의 분산성을 위해 첨가된 절연체인 바인더에 의해 수분에 취악하고 또한 열적으로 매우 불안한 특성을 보여준다. 이러한 문제점을 해결하기 위해 본 연구에서는 플라즈마를 활용하여 AgNW에 존재하는 바인더를 화학적, 물리적으로 효과적으로 제거할 수 있었으며, 이를 통해 환경적, 열적 안정성을 확보할 수 있었다. 더불어 AgNW에 내산화성이 우수한 부가적인 박막을 형성함으로 300도 이상의 고온에서도 안정한 AgNW 투명전극 소재를 개발할 수 있었다.

  • PDF

Monolithic Integration of Arrays of Single Walled Carbon Nanotubes and Sheets of Graphene

  • Hong, Seok-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.2-68.2
    • /
    • 2012
  • We present a scheme for monolithically integrating aligned arrays of single walled carbon nanotubes (SWNTs) with sheets of graphene, for use in electronic devices. Here, the graphene and arrays of SWNTs are formed separately, using chemical vapor deposition techniques onto different, optimized growth substrates. Techniques of transfer printing provide a route to integration, yielding two terminal devices and transistors in which patterned structures of graphene form the electrodes and the SWNTs arrays serve as the semiconductor. Electrical testing and analysis reveal the properties of optically transparent transistors that use this design, thereby giving insights into the nature of contacts between graphene and SWNTs.

  • PDF

Optoelectronic and electronic applications of graphene

  • Yang, Hyun-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.67.2-67.2
    • /
    • 2012
  • Graphene is expected to have a significant impact in various fields in the foreseeable future. For example, graphene is considered to be a promising candidate to replace indium tin oxide (ITO) as transparent conductive electrodes in optoelectronics applications. We report the tunability of the wavelength of localized surface plasmon resonance by varying the distance between graphene and Au nanoparticles [1]. It is estimated that every nanometer of change in the distance between graphene and the nanoparticles corresponds to a resonance wavelength shift of ~12 nm. The nanoparticle-graphene separation changes the coupling strength of the electromagnetic field of the excited plasmons in the nanoparticles and the antiparallel image dipoles in graphene. We also show a hysteresis in the conductance and capacitance can serve as a platform for graphene memory devices. We report the hysteresis in capacitance-voltage measurements on top gated bilayer graphene which provide a direct experimental evidence of the existence of charge traps as the cause for the hysteresis [2]. By applying a back gate bias to tune the Fermi level, an opposite sequence of switching with the different charge carriers, holes and electrons, is found [3]. The charging and discharging effect is proposed to explain this ambipolar bistable hysteretic switching.

  • PDF

The Structure, Optical and Electrical Characteristics of AZO Thin Film Deposited on PET Substrate by RF Magnetron Sputtering Method (PET 기판 위에 RF magnetron sputtering으로 증착한 AZO 박막의 구조적, 광학적, 전기적 특성)

  • Lee, Yun seung;Kim, Hong bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.36-40
    • /
    • 2016
  • The 2 wt.% Al-doped ZnO(AZO) thin films were fabricated on PET substrates with various RF power 20, 35, 50, 65, and 80W by using RF magnetron sputtering in order to investigate the structure, electrical and optical properties of AZO thin films in this study. The XRD measurements showed that AZO films exhibit c-axis orientation. At a RF power of 80W, the AZO films showed the highest (002) diffraction peak with a FWHM of 0.42. At a RF power of 65W, the lowest electrical resistivity was about $1.64{\times}[10]$ ^(-4) ${\Omega}-cm$ and the average transmittance of all films including substrates was over 80% in visible range. Good transparence and conducting properties were obtained due to RF power control. The obtained results indicate that it is acceptable for applications as transparent conductive electrodes.

A Study on Capacitive Coupling Wireless Power Transfer using Transparent Electrodes through electric vehicles glasses (투명전극을 이용한 전기자동차 유리를 통한 커패시티브 커플링 무선전력전송에 관한 연구)

  • You, Young Soo;Yi, Kang Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.167-168
    • /
    • 2016
  • 본 논문은 투명전극을 이용한 커패시티브 커플링 무선전력 전송에 관한 연구이다. 기존의 연구에서 유리를 유전체로 하여 큰 커플링 커패시터를 얻을 수 있었으며 이를 통해 전기자동차 무선전력 전송이 가능했었다. 하지만 동판을 이용하여 커패시터를 생성하는 경우 유리를 사용하는 응용분야에서는 시야확보의 문제점을 가진다. 이러한 문제점을 해결하기 위한 방식으로 전기전도성이 높은 투명전극 사용방식을 제안한다. 제안하는 방식의 타당성 검증을 위해 모의실험을 통한 손실과 효율을 분석했다. 또한 실험의 타당성 검증을 위해 동판만으로 구성한 커패시터, 투명전극과 동판으로 구성한 커패시터를 이용해 실제 200W급 송 수신 회로를 설계 및 제작하여 비교 분석 하였다.

  • PDF

Advances in Intrinsically Stretchable Light-Emitting Diodes (본연적 신축성을 갖는 발광 다이오드 개발 동향)

  • Wonjin Koh;Moon Kee Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.537-546
    • /
    • 2023
  • Intrinsically stretchable light-emitting diodes, composed of stretchable electrodes, charge transport layers, and luminescent materials, have garnered significant interest for enhancing human well-being and advancing the field of deformable electronics. Various luminescent materials, such as perovskites and organics, have been integrated with stretchable elastomers to function as the stretchable emissive layers in these intrinsically stretchable LEDs. Stretchable conductors including Ag nanowire based percolating structures and conducting polymers have been utilized as stretchable transparent electrode. Despite this progress, their performances in terms of efficiency and stability remain challenging compared to their structurally stretchable and rigid LED counterparts. This review offers a comprehensive overview of recent advancements in intrinsically stretchable LEDs, focusing on material innovations.

Characteristics of Atomic Layer-Controlled ZnO:Al Films by Atomic Layer Deposition (원자층 증착법을 이용한 ZnO:Al 박막의 특성)

  • Oh, Byeong-Yun;Baek, Seong-Ho;Kim, Jae-Hyun;Lee, Hee-Jun;Kang, Young-Gu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.40-40
    • /
    • 2010
  • Structural, electrical, and optical properties of atomic layer-controlled AI-doped ZnO (ZnO:Al) films grown on glass by atomic layer deposition (ALD) were characterized with various $Al_2O_3$ film contents for use as transparent electrodes. Unlike films made using sputtering methods, the diffraction peak position of the films grown by ALD based on alternate self-limiting surface chemical reactions moved progressively to a wider angle (red shift) with increasing $Al_2O_3$ film content, which seems to be evidence of Zn substitution in the film by layer-by-layer growth. By adjusting the $Al_2O_3$ film content, the electrical resistivity of ZnO:Al film with the $Al_2O_3$ film content of 2.96% reached the lowest electrical resistivity of $9.80{\times}10^{-4}\Omega{\cdot}cm$, in which the carrier mobility, carrier concentration, and optical transmittance were $11.20\;cm^2V^{-1}s^{-1}$, $5.69{\times}10^{20}\;cm^{-3}$, and 94.23%, respectively. Moreover, the estimated figure of merit value for the transparent conductive oxide applications from our best sample was $7.7\;m{\Omega}^{-1}$.

  • PDF

The effects of annealing of the ATO films prepared by RF magnetron sputtering (RF 마그네트론 스퍼터를 이용한 ATO 박막의 열처리 효과)

  • Park, Sei-Yong;Lee, Sung-Uk;Park, Mi-Ju;Kim, Young-Ryeol;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.270-271
    • /
    • 2008
  • Antimony (6 wt%) doped tin oxide (ATO) films to improve conductivity were deposited on 7059 coming glass by RF magnetron sputtering method for application to transparent electrodes. The ATO film was deposited at a working pressure of 5 mTorr and RF power of 175 W. We investigated the effects of the post-annealing temperature on structural, electrical and optical properties of the ATO films. The films were annealed at temperatures ranging from $300^{\circ}C$ to $600^{\circ}C$ in step of $100^{\circ}C$ using RTA equipment in vacuum ambient. X-ray diffraction (XRD) measurements showed the ATO films to be crystallized with a strong (101) preferred orientation as the annealing temperature increased. Electrical resistivity decreased significantly with annealing temperatures up to $600^{\circ}C$. ATO film annealed at temperature of $600^{\circ}C$ showed the lowest resistivity of $5.6\times10^{-3}\Omega$-cm. Optical transmittance increased significantly with annealing temperatures up to $600^{\circ}C$. The highest transmittance was 90.8 % in the visible range from 400 to 800 nm.

  • PDF

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.