• Title/Summary/Keyword: Transparent Conductive Electrode

Search Result 127, Processing Time 0.031 seconds

Electrical and Optical Properties of OLED with AZO Anode Electrode (AZO anode 전극을 갖는 OLED의 전기적, 광학적 특성)

  • Jin, Eun-Mi;Shin, Eun-Chul;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.91-92
    • /
    • 2006
  • Aluminum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). AZO films have been deposited on glass (corning 1737) substrates by RF magnetron sputtering system. The electrical resistivity of AZO films was $1.81{\times}10^{-2}{\Omega}cm$ and the average transmittance in the visible range 400-800 nm was more than 76% Organic light-emitting diodes (OLEDs) with AZO/TPD/$Alq_3$/Al configuration were fabricated. The current density-voltage properties of devices were studied and compared with ITO devices fabricated under the same conditions.

  • PDF

Development of Roll Printing Process System for The Next Generation Flexible Solar Cell (차세대 플렉서블 태양전지 생산용 롤프린팅 공정장비 기술 개발)

  • Kim, Dong-Soo;Kim, Jung-Su;Kim, Myoung-Sub;Kim, Kang-Dae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.57-60
    • /
    • 2009
  • The conductive coating method was used for a various industrial fields. For example, Sputtering process is using to a coat of ITO layer in LCD or OLED panel manufacture process and fabricate a base layer of substrate of an electric printing device. However, conventional coating process (beam sputtering, spin coating etc.) has a problems in the industrial manufacturing process. These processes have a very high cost and critical manufacturing environment as a vacuum process. Recently, many researchers were proposed a various printing process instead of conventional coating process. In this paper, we propose an ESD printing process in ITO coating layer and apply to fabricate a conductive coating film. Ours transparent electrode had a surface resistance of about $66{\Omega}/{\square}$ and transparent of 74% in the wavelength of 500nm. This transparent electrode manufacturing process will be applied to Roll-to-Roll process. In addition, we developed roll printing process system for the next generation flexible solar cell.

  • PDF

Opto-electrical properties of solution based carbon nanotube electrode (용액코팅된 탄소나노튜브 전극의 광전기적 성질)

  • Woo, Jong-Seok;Kim, Sun-Young;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.394-394
    • /
    • 2007
  • Transparent conductive films can serve as a critical component in displays, solar cells, lasers, optical communication devices, and solid state lighting. Carbon nanotube (CNT) based transparent conductive films are fabricated on glass and polymer substrates. CNTs typically exist in form of quasi-crystalline bundles or highly entangled bundles containing tens of individual nanotubes. To achieve full potential, CNTs must be dispersed in a solvent or other organic media. CNTs are acid treated with nitric acid then the stable dispersion of CNTs in polar solvent such as alcohols, DMF, etc. is achieved by sonication. The solubility of CNTs correlates well with the area ratio of the D and G bands from Raman spectrum. Thin films are formed from well dispersed CNT solutions using spray coating method. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders.

  • PDF

Highly Conductive and Transparent Electrodes for the Application of AM-OLED Display

  • Ryu, Min-Ki;Kopark, Sang-Hee;Hwang, Chi-Sun;Shin, Jae-Heon;Cheong, Woo-Seok;Cho, Doo-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Lee, Jeong-Ik;Chung, Sung-Mook;Yoon, Sung-Min;Chu, Hye-Yong;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.813-815
    • /
    • 2008
  • We prepared highly transparent and conductive Oxide/Metal/Oxide(OMO) multilayer by sputtering and developed wet etching process of OMO with a clear edge shape for the first time. The transmittance and sheet-resistance of the OMO are about 89% and $3.3\;{\Omega}/sq.$, respectively. We adopted OMO as a gate electrode of transparent TFT (TTFT) array and integrated OLED on top of the TTFT to result in high aperture ratio of bottom emission AM-OLED.

  • PDF

Fabrication of Stretchable Transparent Electrodes

  • Oh, Jong Sik;Yeom, Geun Young
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.149-156
    • /
    • 2017
  • Recently, stretchable and transparent electrodes have received great attention owing to their potential for realizing wearable electronics. Unlike the traditional transparent electrodes represented by indium tin oxide (ITO), stretchable and transparent electrodes are able to maintain their electrical and mechanical properties even under stretching stress. Lots of research efforts have been dedicated to the development of stretchable and transparent electrodes since they represent the most important engineering platform for the production of wearable electronics. Various approaches using silver nanowires, nanostructured networks, conductive polymers, and carbon-based electrodes have been explored by many world leading research groups. In this review, present and recent advances in the fabrication methods of stretchable and transparent electrodes are discussed.

Fabrication of Transparent Electrode Film for Organic Photovoltaic using Ag grid and Conductive Polymer (Ag grid와 전도성 고분자를 이용한 인쇄기반 OPV용 투명전극 형성)

  • Yu, Jongsu;Kim, Jungsu;Yoon, Sungman;Kim, Dongsoo;Kim, Dojin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.116.1-116.1
    • /
    • 2011
  • Materials with a combination of high electrical conductivity and optical transparency are important components of many electronic and optoelectronic devices such as liquid crystal displays, solar cells, and light emitting diodes. In this study, to fabricate a low-resistance and high optical transparent electrode film for organic photovoltaic, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of thermal roll imprinted (TRI) poly-carbonate (PC) patterned films, the manufacture of high-conductivity and low-resistance Ag paste which was filled into patterned PC film using a doctor blade process and then coated with a thin film layer of conductive polymer by a spin coating process. As a result of these imprinting processes the PC films obtained a line width of $10{\pm}0.5{\mu}m$, a channel length of $500{\pm}2{\mu}m$, and a pattern depth of $7.34{\pm}0.5{\mu}m$. After the Ag paste was used to fill part of the patterned film with conductive polymer coating, the following parameters were obtained: a sheet resistance of $9.65{\Omega}$/sq, optical transparency values were 83.69 % at a wavelength of 550 nm.

  • PDF

Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices (유연전자소자를 위한 차세대 유연 투명전극의 개발 동향)

  • Kim, Joo-Hyun;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

플렉서블 디스플레이용 투명전극 제조를 위한 ITO 대체소재 연구동향

  • Kim, Seon-Ok;Choe, Su-Bin;Kim, Jong-Ung
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • As the flexible displays have been considered as a breakthrough to make a new electronics category, transparent electrodes have also confronted with an emerging issue, i.e., they also need to be mechanically flexible. For this to be made possible, a transparent electrode capable of withstanding large amounts of strain must be developed. Indium tin oxide (ITO) has been one of the most widely adopted transparent electrodes for displays and other transparent electronics, mainly supported by its high electrical conductivity and optical transparency. However, its brittle nature has forced the display industry to search for other alternatives. Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Here we reviewed recently-published research works introducing flexible displays, all of which are employing the novel candidates for a conducting material.

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

Characterization of Ag Nanowire Transparent Electrode Fabricated on PVDF Film (PVDF 필름 위에 제작된 고전도도 Ag 나노와이어 투명전극 특성 연구)

  • Ra, Yong-Ho;Park, Hyelim;An, Soyeon;Kim, Jin-Ho;Jeon, Dae-Woo;Kim, SunWoog;Lee, Mijai;Hwang, Jonghee;Lim, Tae Young;Lee, YoungJin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.366-370
    • /
    • 2019
  • In this study, we have successfully fabricated a highly conductive transparent electrode using Ag nanowires, based on piezoelectric polyvinylidene difluoride (PVDF) film, that can be applied as transparent and flexible speakers. The structural morphology of the Ag nanowires was confirmed by a detailed scanning electron microscopy. Ultraviolet-visible spectroscopy demonstrated that the transparent electrode fabricated by the Ag nanowires exhibited a transmittance of above 70%. The transparent electrode also showed very low sheet resistance with high flexibility. We have further developed an anti-oxidation coating layer by using a tetraethyl orthosilicate-poly trimethyloxyphenylsilane (TEOS-PTMS) slurry technique. It was confirmed that the transmittance and sheet resistance of the antioxidant film depends critically on the humidity of the film surface. We believe such Ag nanowire electrodes are a very promising next-generation transparent electrode technology that can be used in future flexible and transparent devices.