• Title/Summary/Keyword: Transonic region

Search Result 63, Processing Time 0.024 seconds

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.

Transonic/Supersonic Flutter Analysis of a Fighter Wing with Tip-Store (끝단 장착물이 있는 항공기 날개의 천음속/초음속 플러터 해석)

  • Kim, Dong-Hyun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1198-1203
    • /
    • 2000
  • In this study, a nonlinear aeroelastic analysis system for the fighter wing with tip-store has been developed additionally in the transonic and supersonic flow region. The unsteady CFD code based on the transonic small disturbance theory has been incorporated to consider the numerical capability for the aerodynamic nonlinear effects. The coupled time-integration method is used to observe the detailed nonlinear aeroelastic responses for elastic wings in their flight. condition. A conservative wing-box model of a fighter wing with tip-store is modeled by MSC/PATRAN and the corresponding free vibration analysis has been performed by MSC/NASTRAN. The results of flutter analyses are presented in the subsonic, transonic and supersonic flow regime.

  • PDF

Influence of head structure on hydrodynamic characteristics of transonic motion projectiles

  • Wang, Rui;Yao, Zhong;Li, Daqin;Xu, Baocheng;Wang, Jiawen;Qi, Xiaobin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.479-490
    • /
    • 2020
  • The hydrodynamic characteristic of transonic motion projectiles with different head diameters are investigated by numerical simulation. Compressibility effect in liquid-phase water are modeled using the Tait state equation. The result shows that with increasing of velocity the compression waves transfer to shock waves, which cause the significant increasing of pressure and decreasing the dimensions of supercavities. While the increasing of head diameter, the thickness, the vapor volume fraction and the drag coefficient of supercavities are all enhanced, which is conducive to the stability of transonic-speed projectiles. The cavity dynamics of the different head projectiles are compared, and the results shows when Mach number is in high region, the truncated cone head projectile is enveloped by a cavity which results in less drag and better stability.

Aerodynamic Analysis Automation and Analysis Code Verification of an Airfoil in the Transonic Region (천음속영역에서 에어포일의 공력해석 자동화 및 해석코드 검증)

  • Kim, Hyun;Chung, Hyoung-Seog;Chang, Jo-Won;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.7-15
    • /
    • 2006
  • Aerodynamic analysis of an airfoil in the transonic region was automated in order to enable parametric study by using the journal file of the commercial analysis code FLUENT, pre/post process Gambit and computational mathematics code MATLAB. The automated capability was illustrated via NACA 0012 and RAE 2822 airfoils. This analysis was carried out at Mach numbers ranged from 0.70 to 0.80, angles of attack; 1$^{\circ}$, 2$^{\circ}$ and 4$^{\circ}$, Reynolds numbers; 4.0${\times}$106, 6.5${\times}$106. The analysis results of a pressure coefficient were verified by comparing with the experimental data which were measured in terms of chord length because the pressure coefficient of an airfoil surface is a good estimator of flow characteristics. The results of two airfoils show that this analysis code is useful enough to be used in the design optimization of airfoil.

  • PDF

Prediction of Pressure Fluctuations on Hammerhead Vehicle at Transonic Speeds Using CFD and Semi-empirical Formula Considering Spatial Distribution (CFD와 공간분포를 고려한 반경험식을 이용한 해머헤드 발사체의 천음속 압력섭동 예측)

  • Kim, Younghwa;Nam, Hyunjae;Kim, June Mo;Sun, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.457-464
    • /
    • 2021
  • To analyze the buffet phenomenon that causes serious vibration loads on a satellite launch vehicle, the pressure fluctuations on a hammerhead launch vehicle at transonic speeds are predicted by coupling CFD analysis and semi-empirical methods. From the RANS simulation, shock oscillation region, separation region, and separation reattachment region are identified, and the boundary layer thickness, the displacement thickness, and flow properties at boundary layer edge are calculated. The pressure fluctuations and power spectra on the hammerhead fairing are predicted by coupling RANS results and semi-empirical methods considering spatial distribution, and compared with the experimental data.

Effects of Rotational Speed on the Performance in a Transonic Axial Compressor with a Dihedral Stator (회전속도가 상반각 정익을 적용한 천음속 축류 압축기 성능에 미치는 영향)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents a numerical investigation of the effect of the rotation speed on the performance in a transonic axial compressor with the dihedral stator. Four stator geometries with different stacking line variables were tested in the flow simulations over the whole operating range. It was found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occurred at low mass flow rate with the 100 % design speed. The hub dihedral stator could suppress the shroud loss region and consequently improve the stall margin. In case of the 70 % design speed condition as the mass flow rate decreased, it was seen that the high loss region was placed at the midspan of the rotor passage. The dihedral stator slightly affected the local diffusion factor, but the performance of the compressor was not changed.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

Experimental Research on Aerodynamic Instabilities in a Multi Stage Transonic Axial Compressor (다단 천음속 압축기의 유동 불안정성에 관한 실험적 연구)

  • Kang, Young-Seok;Park, Tae-Choon;Hwang, Oh-Sik;Lim, Hyung-Soo;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.12-19
    • /
    • 2012
  • This study presents unsteady and unstable characteristics of three stage transonic axial compressor, developed by Korea Aerospace Research Institute. As approaching to the unstable operating region at the 103% design speed of the compressor, a modal type stall precursor appears in front of highly loaded 3rd rotor row at first, and it propagates to the upstream. On the contrary, actual stall cell initiates from the stall precursor in front of the 1st rotor row, and it propagates to the downstream of the compressor. After the stall region reached the 3rd stage and stall cell rotates circumferentially about 360 deg, it develops to one dimensional compressor surge mode. It shows a mild surge behaviour with 3~4 Hz frequency. From the test data, it can be suggested that there is a priority to give an optimum blade loading distributions to construct a multi stage transonic axial compressor stages either to secure more stable compressor operating ranges, or to maximize the compressor efficiency.

Virtual Flutter Plight Test of a Full Configuration Aircraft with Pylon/External Stores

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Paek, Seung-Kil
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.34-44
    • /
    • 2003
  • An advanced aeroelastic analysis using a computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) is presented in this Paper. A general aeroelastic analysis system is originally developed and applied to realistic design problems in the transonic flow region, where strong shock wave interactions exist. The present computational approach is based on the modal-based coupled nonlinear analysis with the matched-point concept and adopts the high-speed parallel processing technique on the low-cost network based PC-clustered machines. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Euler equations using the unstructured grid system have been applied to easily consider complex configurations. It is typically shown that the advanced numerical approach can give very realistic and practical results for design engineers and safe flight tests. One can find that the present study conducts a virtual flutter flight test which are usually very dangerous in reality.