• Title/Summary/Keyword: Transmittivity

Search Result 3, Processing Time 0.018 seconds

Analysis of the Resonant Tunneling in an AlGaAs/GaAs Single Quantum Well Structure by an Airy Function Approach (AlGaAs/GaAs 단일양자 우물 구조에서 Airy 함수를 이용한 공명터널링 현상에 관한 고찰)

  • 김성진;이경윤;이헌용;성영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.19-24
    • /
    • 1992
  • The analysis of the resonant tunneling based on the exact solution of Schrodinger equations is performed in a single quantum well structure under applied bias. The transmittivity and the net tunneling current density are calculated with Airy function and the boundary conditions which is suggested by Bastard. The results are compared with those from other methods and boundary conditions. From the calculated J-V characteristics for the tunneling current, the dependence of the voltage location showing the first peak current on the various temperatures and Fermi level is investigated. In addition, the wave function within the structure is obtained and compared with that from the flat-potential model.

  • PDF

Acoustic waves in a high-frequency ultrasonic cleaner (고주파 초음파 세정기의 파동 해석)

  • 최성훈;김진오;김용훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.656-661
    • /
    • 1997
  • Ultrasonic cleaning at high frequency near 1MHz, called megasonic cleaning, is commonly used to remove particles less than 1.mu.m by generating accelerations on them. Ultrasonic waves generated from piezoelectric transducers are transmitted through a non-metallic inner container which is used to isolate a cleaning object from metallic ions. The transmission characteristics of a double-structured megasonic cleaner on the variations of parameters such as the thickness and oblique angle of a inner container, chemical ratio of a cleaning agent and temperature and transmittivity are investigated. The results are used to determine an optimum cleaning condition.

  • PDF

Thermal Characteristics Investigation of Space-borne Deployable Mesh Antenna according to the Mesh Weaving Density (OPI) (메쉬 제직 밀도(OPI)에 따른 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Kyu Baek;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2023
  • Recently, as Synthetic Aperture Radar (SAR), communication, and signal surveillance missions of spacecraft have become more advanced, research has been actively conducted on the deployable large mesh antenna system with excellent storage efficiency compared to the deployment area, and light weight. Deployable Mesh antennae are characterized by an increase in the number of Openings Per Inch (OPI), which is a measure of mesh weaving density as the mission frequency band increases, and this OPI change directly affects the thermal optical properties of the mesh antenna, so research on this is required. In this paper, to verify the thermal relationship between the optical properties of the mesh and antenna reflector, thermal sensitivity analysis between the mesh and the antenna reflector is performed by in-orbit thermal analysis with various optical characteristics of the mesh based on existing overseas research cases. In addition, the temperature gradient effect of the mesh reflector is analyzed.