• Title/Summary/Keyword: Transmitting Coils

Search Result 29, Processing Time 0.023 seconds

Design and Implementation of Microstrip Quadrature Coupler and High Power Transmitting/Receiving Switch Using Dynamic Loading Technique for 1-Tesal MRI System (동적 부하 기술을 이용한 1-Tesla 자기공명 영상 시스템용 마이크로 스트립 quadrature coupler 및 고출력 송수신 스위치의 설계 및 제작)

  • 류웅환;이미영;이흥규;이황수;김정호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.1-11
    • /
    • 1999
  • It is now common practice to utilize the quadrature RF coils to improve the signal-to-noise ratio (SNR) in the Magnetic Resonance Imaging (MRI) System. In addition, to make such an available SNR improvement, it is mandatory to use a well-designed quadrature coupler, which facilitates a perfect 3-dB coupling and quadrature-phase shift. However, the four ports matching condition has to be well considered during the RF excitation and the signal detection period. This work investigates the effects of such a mismatching condition (especially, due to patient) from the analysis, simulation, and real implementation and firstly proposes dynamic loading technique for a quadrature coupler and transmitting/receiving switch module to minimize a patient mismatching and enhance a system reliability. Also, we designed and implemented the quadrature coupler and transmitting/receiving switch module using microstrip. As a result, the SNR of our MRI system using the microstrip quadrature coupler and transmitting/receiving switch module with dynamic load increases 3 dB compared with the old one using USA quadrature switch. Also, the power capability of quadrature coupler and transmitting/receiving switch module is 5-kw peak power. Considering power loss and reduction of size, we used a RT/duroid 6010 substrate with high permittivity and for simulation we use Compact Software.

  • PDF

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

Development of Unmanned Speed Sprayer(I) -Remote Control and Induction Cable System- (무인 스피드 스프레이어의 개발(I) -원격제어 및 유도케이블 시스템-)

  • 장익주;김태한;조명동
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.226-235
    • /
    • 1995
  • An unmanned speed sprayer was developed using a remote control and an inductive cable guidance systems to protect operators and environment from hazardous pesticides. The sprayer consists of a remote control system, an induction system, obstacle detectors, control actuators and an one-chip microcomputer. The sprayer can be operated by the induction guidance and/or remote control. The following summarize characteristics of the developed speed sprayer. 1) Both the remote control and the induction guidance operation were possible with the developed speed sprayer. 2) Sixteen functions of the forwarding, backing, halting, steering, 3-way valve for nozzles and fan operating etc. were utilized on the remote control system. 3) It was concluded that the DTMF method, having less transmitting error, performed better than the FSK method for an agricultural remote controller. A radio station may be necessary. 4) The digital inductive guidance system, consisting of five low-impedance detection coils and a window comparator circuit, performed better than the analog detecting system, guiding route using inductive voltage differential from tow detection coils.

  • PDF

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.

Design of pillow type contactless recharging device for totally implantable middle ear systems (완전 이식형 인공중이를 위한 베개형 비접촉 충전장치의 설계)

  • Lim, Hyung-Gyu;Kim, Jong-Min;Kim, Min-Kyu;Yoon, Young-Ho;Park, Il-Yong;Song, Byung-Seop;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.78-84
    • /
    • 2005
  • A contactless recharging device for totally implantable middle ear systems has been designed as a pillow type that the user can recharge the implanted battery with taking a rest. The proposed device uses the electromagnetic coupling between the transmitting coil and the receiving coil. To supply sufficient power for the implanted circuits, each coil uses LC resonance and the implanted device uses voltage doubler. A power MOSFET is used for switching the DC voltage of LC parallel circuit and the switching frequency demands on a programmable frequency generator which is controlled by microcontroller. In order to improve the electromagnetic coupling efficiency at specific positions of coil which may vary with the displacement of head, the optimal location of receiving coil was studied, and the 5 transmitting coils in a pillow for recharging the implant module was designed. From such a recharging experiment, it was found that the proposed device could provide the sufficient operating voltage within the distance of 4 cm between pillow and the implanted device.

Performance Analysis of 6.78MHz Current Mode Class D Power Amplifier According to Load Impedance Variation (부하 임피던스 변화에 따른 6.78MHz 전류모드 D급 전력증폭기 특성 해석)

  • Go, Seok-Hyeon;Park, Dae-kil;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2019
  • This paper has designed a current mode class D power amplifier to increase the transmission efficiency of a 6.78 MHz wireless power transfer (WPT) transmitter and to ensure stable characteristics even when the transmitting and receiving coil intervals change. By reducing the loss due to the parasitic capacitor component of the transistor, which limits the theoretical efficiency of the linear amplifier, this research has improved the efficiency of the power amplifier. The circuit design simulator was used to design the high efficiency amplifier, and the power output and efficiency characteristics according to the load impedance change have been simulated and verified. In the simulation, 42.1 dBm output and 95% efficiency was designed at DC bias 30 V. The power amplifier was fabricated and showed 91% efficiency at the output of 42.1 dBm (16 W). The transmitting and receiving coils were fabricated for wireless power transfer of the drone, and the maximum power added efficiency was 88% and the output power was $42.1dBm{\pm}1.7dB$ according to the load change causing from the coil intervals.

Design of a High Power Frequency Tuneable Resonator for Wireless Power Transfer (무선 전력 전송용 고출력 주파수 가변 공진기 설계)

  • Park, Jaesu;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.352-355
    • /
    • 2013
  • In this paper, a high power tuneable resonator for a wireless power transfer system based on magnetic resonance is proposed. A spiral structure is used for a self-resonant coil and tuneable trimmer capacitors are added at the edges of resonant coils such that the frequency can be easily tuned. 3D simulation tools and equivalent circuit modeling method are used for predicting self-resonant frequency and scattering parameters according to the change of capacitor values. From the measurement of the prototype WPT system, the resonant frequency could be controlled from 3.0 MHz to 4.5 MHz and the transmission efficiency way over 50 % when the distance between transmitting coil and receiving coil was 160 mm.

Characteristic Analysis of Efficiency and Impedance With WPT Transmitter and Receiver Coil Distance (무선전력전송 송수신코일 거리에 따른 효율 및 임피던스 특성 해석)

  • Park, Dae Kil;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2022
  • In this paper, we have proposed a magnetic resonant 6.78MHz WPT(wireless power transfer) technique which can be applied to a fixed transmitter and a receiver of varying relative distance and coil alignment, Power transmission characteristics are studied with the relative distance and misalignment ration of coil area between the transmitting and receiving coils. The coils are designed with the size of 60×80mm2 by direct feeding method, and the characteristics are derived with the maximum relative distance of 50mm and horizontal area misalignment state of 0-40mm misalignment of coil center axis in the XY plane. The power transmission characteristics are compared between the 3D EM simulation and the measured data, and the power transmission shows larger than -3dB performance with the vertical distance of up to 30mm and 50% area misalignmment ratio. This work showsthe transmission characteristics according to relative distance and misalignment state between the cols and that direct feeding has advantage for the short relative distance and small misalignment ratio.

Implementation of Wireless Power Transmission System for Multiple Receivers Considering Load Impedance Variation (부하 임피던스 변화를 고려한 복수 수신기 무선전력전송 구현)

  • Kim, Young Hyun;Park, Dae Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • This paper proposes a single-input multiple-output (SIMO) self-resonant wireless power transmission system for transmitting power to multiple receivers and the characteristics are simulated and measured. A 600 mm diameter transmission single loop, a 600 mm diameter helical transmission resonant coil, an external diameter 900 mm planar spiral reception resonant coil, and an $80{\times}60mm^2$ flat plate square coil as a receiver are used to form a wireless power transmission system 600 mm away with the table structure. For optimal characteristics, the wireless power transmission coils are designed by EM simulation and equivalent circuit analysis, and the characteristics are simulated and measured. The variation of the efficiency with distance from the center of the spiral resonant coil is analyzed and the measured efficiency is 57% for one receiver and for the two receivers, the efficiency is 37% for each receiver.