• Title/Summary/Keyword: Transmit

Search Result 3,665, Processing Time 0.028 seconds

Transmit Receive RF Resonator Optimization at 7 T MRI System (7 T 자기공명영상시스템에서의 송수신 RF 공진기 최적화)

  • Alam, Mohammad Wajih;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1727-1730
    • /
    • 2016
  • Magnetic resonance imaging has a potential to produce clear anatomical as well as functional images of human body. However, the ability to diagnose is limited by signal to noise ratio (SNR) and the resolution of current medical systems. To remove the challenges prevalent due to the use of high field scanners, dedicated radio frequency coils are used. Transverse electromagnetic coils have an advantage of providing homogeneous magnetic field throughout the region but with low signal to noise ratio while surface coils have an advantage of providing higher signal to noise ratio but with low homogeneity. This research combines both the advantage into one by utilizing transmit only transverse electromagnetic radio frequency coils (8 channel) along with receive only surface coils (by varying the number) for better imaging of brain. A 7 Tesla 32-channel close fitting helmet shaped phased-array surface coils along with the combination of 8 channel transmit only transverse electromagnetic coils provided good homogeneity as well as significant SNR improvements throughout the human brain.

Generalized Quaternary Quasi-Orthogonal Sequences Spatial Modulation (일반화한 쿼터너리 준직교 시퀀스 공간변조 기법)

  • Shang, Yulong;Kim, Hojun;Jung, Taejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.404-414
    • /
    • 2016
  • So called quaternary quasi-orthogonal sequence spatial modulation (Q-QOS-SM) has been presented with an advantage of improved throughputs compared to the conventional SM and generalized spatial modulation (GSM) by virtue of a larger set size of QOSs and its minimized correlation value between these QOSs. However the Q-QOS-SM has been originally invented for limited transmit antennas of only powers of two. In this paper, by extending the Q-QOS-SM to any number of transmit antennas, we propose a generalized Q-QOS-SM, referred as G-QO-SM. Unlike the conventional Q-QOS-SM using the Q-QOSs of length of any power of two, the proposed G-QO-SM is constructed based on the Q-QOSs of only the lengths of 2 and 4. The proposed scheme guarantees the transmission of the total $N_t$ spatial bits with $N_t$ transmit antennas, and thus achieves greatly higher throughputs than the other existing schemes including the SM, GSM, Q-QOS-SM, Quadrature-SM, and Enhanced-SM. The performance improvements of the proposed G-QO-SM is justified by comparing the analytically derived BER upper bounds and also the exact Monte Carlo simulation results.

PDOCM : Fast Text Compression on MasPar Machine (PDOCM : MasPar머쉰상의 새로운 압축기법과 빠른 텍스트 축약)

  • Min, Yong-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 1995
  • Due to rapid progress in data communications, we are able to acquire the information we need with ease. One means of achieving this is a parallel machine such as the MasPar. Although the parallel machine makes it possible to receive/transmit enormous quantities of data, because of the increasing volume of information that must be processed, it is necessary to transmit only a minimal amount of data bits. This paper suggests a new coding method for the parallel machine, which compresses the data by reducing redundancy. Parallel Dynamic Octal Compact Mapping (PDOCM) compresses at least 1 byte per word, compared with other coding techniques, and achieves a 54.188-fold speedup with 64 processors to transmit 10 million characters.

  • PDF

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

Contention-based Reservation Protocol Using a Counter for Detecting a Source Conflict in WDM Single-hop Optical Network with Non-equivalent Distance

  • Sakuta, Makoto;Nishino, Yoshiyuki;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.365-373
    • /
    • 2001
  • We propose a new channel reservation protocol which can reduce message delay by using a counter for detection of d source conflict in a WDM single-hop network with non-equivalent propagation delay. A source convict occurs when a source node has the right to transmit more than or equal to two messages simultaneously, which are transmitted using different wavelengths. In such a case, the source node has to newly obtain the right to transmit the message. In the proposed protocol, by using a source conflict counter a source node can detect a source conflict before a wave-length assignment is performed. Therefore, the source node can start a procedure to newly obtain the right to transmit the message which cannot be transmitted due to a source conflict. We analyse the throughput performance by taking the effect of a source conflict into account, and show that the approximate analysis and the computer simulated results are close. Also, from computer simulated results, we show that our proposed protocol can reduce mean message delay dramatically without degrading throughput performance as the offered load becomes large.

  • PDF

Performance of DCSK under the Coexistence of non-Chaotic Transmit Reference System

  • Thapaliya, Karuna;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1138-1145
    • /
    • 2007
  • In wireless communications, chaotic communications have been a field of interest due to its low complexity in hardware implementation and low power consumption in chaotic signal generation. Among the modulation schemes using the chaotic signal, Differential Chaos Shift Keying (DCSK) is a robust non coherent technique. As in the conventional communication systems, chaos-based systems are required to provide reasonable bit error performance in the presence of a narrow-band signal coming from any other systems. The frequency band of this foreign narrow band signal may lie within the bandwidth of the chaos-based systems. This situation may occur when chaotic signal transmission is done in the presence of other conventional communication system. This paper has evaluated the performance of the non coherent differential chaos shift keying (DCSK) system under the presence of conventional non-chaotic transmit reference system. Both systems are assumed to have same data rates. The mathematical expressions for the bit error rate (BER) are derived with computer simulations to verify the analytical results.

Data Compression Algorithm for Efficient Data Transmission in Digital Optical Repeaters

  • Kim, Jae Wan;Eom, Doo Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.142-146
    • /
    • 2012
  • Today, the demand for high-speed data communication and mobile communication has exploded. Thus, there is a growing need for optical communication systems that convert large volumes of data to optical signals and that accommodate and transmit the signals across long distances. Digital optical communication with these characteristics consists of a master unit (MU) and a slave unit (SU). However, the digital optical units that are currently commercialized or being developed transmit data without compression. Thus, digital optical communication using these units is restricted by the quantity of optical frames when adding diversity or operating with various combinations of CDMA, WCDMA, WiBro, GSM, LTE, and other mobile communication technologies. This paper suggests the application of a data compression algorithm to a digital signal processor (DSP) chip as a field programmable gate array (FPGA) and a complex programmable logic device (CPLD) of a digital optical unit to add separate optical waves or to transmit complex data without specific changes in design of the optical frame.

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.

Design and Build of Transmit/Receive Module for X Band (X 대역 T/R 모듈의 설계 및 구현)

  • Park, Sung-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.168-173
    • /
    • 2008
  • In this paper, we have designed transmit/receive Module for X band which can be applied to active phase array radar system. AESA(active electrically beam steered array) is able to transmit high power as like TWTA with composition of TH Module and steer a main beam faster than mechanically steering system. The proposed structure of T/R Module for X band is brick type for physical structure, common leg structure electrically and small size design as MCM(multi chip module). The results show that the characteristic of proposed T/R module can fully cover the specification of required military radar application.

Joint Relay-and-Antenna Selection and Power Allocation for AF MIMO Two-way Relay Networks

  • Wang, xiaoxiang;Zhou, Jia;Wang, DongYu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1016-1033
    • /
    • 2016
  • In this paper, we present a joint relay-and-antenna selection and power allocation strategy for multiple-input multi-output (MIMO) amplify-and-forward (AF) two-way relay networks (TWRNs). In our approach, we select the best transmit and receive antennas at the two sources, a best relay and a best transmit and receive antenna at the selected relay based on maximizing the minimum of the end-to-end received signal-to-noise-ratios (SNRs) under a total transmit power constraints. We obtained the closed-form solution for the optimal power allocation firstly. Then with the optimal allocation solution we found, we can reduce the joint relay-and-antenna selection to a simpler problem. Besides, the overall outage probability is investigated and a tight closed-form approximation is derived, which provides a method to evaluate the outage performance easily and fast. Simulation results are presented to verify the analysis.