• Title/Summary/Keyword: Transmission time

Search Result 5,187, Processing Time 0.03 seconds

Pilot Symbol Assisted High Speed Packet Transmission System based on Adaptive OFDM in Broadband Mobile Channel

  • Ahn, Chang-Jun;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • 4G mobile communication system requires the throughput of 10-100Mbps. Adaptive modulated OFDM system is promising technique for increasing the throughput. In the pilot symbol assisted high-speed packet transmission system, the data symbol duration is generally considered to be small compared to the coherence time. However, OFDM symbol duration is longer than the symbol duration of a single carrier system, so that the packet duration of the pilot symbol assisted high speed packet transmission system is long. In this case, the change of channel conditions is too fast to be accurately estimated by channel estimator at the receiver in high Doppler frequency, so that many errors occur during demodulation, especially with the data symbols at the end of each packet. In this paper, we consider the BER at various instantaneous $E_b/N_o$ that includes the demodulation errors in high Doppler frequency. When the coherence time is ten times longer than the duration of a single packet, the channel can be closely approximated as an AWGN channel. Otherwise, the approximation breaks down and the above-mentioned errors that occur during demodulation must be taken into consideration. In this paper, we propose the pilot symbol assisted high speed packet transmission system based on adaptive OFDM using a novel lookup table to consider the demodulated errors and evaluate the throughput performance.

Time Shifted Pilot Signal Transmission With Pilot Hopping To Improve The Uplink Performance of Massive MIMO System For Next Generation Network

  • Ruperee, Amrita;Nema, Shikha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4390-4407
    • /
    • 2019
  • The paucity of pilot signals in Massive MIMO system is a vital issue. To accommodate substantial number of users, pilot signals are reused. This leads to interference, resulting in pilot contamination and degrades channel estimation at the Base Station (BS). Hence, mitigation of pilot contamination is exigency in Massive MIMO system. The proposed Time Shifted Pilot Signal Transmission with Pilot signal Hopping (TSPTPH), addresses the pilot contamination issue by transmitting pilot signals in non-overlapping time interval with hopping of pilot signals in each transmission slot. Hopping is carried by switching user to new a pilot signal in each transmission slot, resulting in random change of interfering users. This contributes to the change in channel coefficient, which leads to improved channel estimation at the BS and therefore enhances the efficiency of Massive MIMO system. In this system, Uplink Signal Power to Interference plus Noise Power Ratio (SINR) and data-rate are calculated for pilot signal reuse factor 1 and 3, by estimating the channel with Least Square estimation. The proposed system also reduces the uplink Signal power for data transmission of each User Equipment for normalized spectral efficiency with rising number of antennas at the BS and thus improves battery life.

Performance Evaluation of Medical Image Transmission System using TH UWB-IR Technology

  • Lee, Yang-Sun;Kang, Heau-Jo
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.97-100
    • /
    • 2006
  • In this paper, the transmission service for medical image is proposed via IEEE 802.15.4a on WPAN environment. Also, transmission and receiving performance of medical image using TH UWB-IR system is evaluated on indoor multi-path fading environment. On the results, the proposed scheme can solve the problem of interference from the medical equipment in same frequency band, and minimize the loss due to the indoor multi-path fading environment. Therefore, the transmission with low power usage is possible.

Time Synchronization over SpaceWire Network using Hop Count Information (홉 카운트 정보를 이용한 스페이스와이어 네트워크 시각동기화 방안)

  • Ryu, Sang-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.715-718
    • /
    • 2016
  • SpaceWire invented for on-board data handling in a spacecraft has Time-Code defined for time synchronization over SpaceWire network. Delay and jitter of the transmission of Time-Code caused when a Time-Code travels through a network are the main reasons of time synchronization error. This work proposes a scheme that can reduce the time synchronization error by using extended Time-Codes. The proposed scheme can remove both transmission jitter and transmission delay. The scheme will be validated in a simulation environment built with OMNeT++.

  • PDF

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Systematic Transmission Method of Industrial IEEE 802.15.4 for Real-time Mixed Traffic (실시간 혼합 트래픽 전송을 위한 산업용 IEEE 802.15.4 망의 체계적 전송 기법)

  • Kim, Dong-Sung;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.18-26
    • /
    • 2008
  • In this paper, dynamic GTS scheduling method based on IEEE 802.15.4 is proposed for wireless control system considering reliability and real-time property. The proposed methods can guarantee a transmission of real-time periodic and sporadic data within the limited time frame in factory environment. The superframe of IEEE 802.15.4 is used for the dynamic transmission method of real-time mixed traffic (periodic data, sporadic data, and non real-time message). By separating CFP and CAP properly, the periodic, sporadic, and non real-time messages are transmitted effectively and guarantee real-time transmission within a deadline. The simulation results show the improvement of real-time performance of periodic and sporadic data at the same time.

A Novel Transmission Scheme for Compressed Health Data Using ISO/IEEE11073-20601

  • Kim, Sang-Kon;Kim, Tae-Kon;Lee, Hyungkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5855-5877
    • /
    • 2017
  • In view of personal health and disease management based on cost effective healthcare services, there is a growing need for real-time monitoring services. The electrocardiogram (ECG) signal is one of the most important of health information and real-time monitoring of the ECG can provide an efficient way to cope with emergency situations, as well as assist in everyday health care. In this system, it is essential to continuously collect and transmit large amount of ECG data within a given time and provide maximum user convenience at the same time. When considering limited wireless capacity and unstable channel conditions, appropriate signal processing and transmission techniques such as compression are required. However, ISO/IEEE 11073 standards for interoperability between personal health devices cannot properly support compressed data transmission. Therefore, in the present study, the problems for handling compressed data are specified and new extended agent and manager are proposed to address the problems while maintaining compatibility with existing devices. Extended devices have two PM-stores enabling compression and a novel transmission scheme. A variety of compression techniques can be applied; in this paper, discrete cosine transformation (DCT) is used. And the priority of information after DCT compression enables new transmission techniques for performance improvement. The performance of the compressed signal and the original uncompressed signal transmitted over the noisy channel are compared in terms of percent root mean square difference (PRD) using our simulation results. Our transmission scheme shows a better performance and complies with 11073 standards.

Implementation of Real Time 3 channel Transmission System Using ECG Data Compression Algorithm by Max-Min Slope Update (최대 및 최소 기울기 갱신에 의한 ECG 압축 알고리듬을 이용한 실시간 3채널 전송시스템 구현)

  • 조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.271-278
    • /
    • 1995
  • An ECG data compression algorithM using max-min slope update is proposed and a real time 3 channel ECG transmission system is implemented using the proposed algorithm. In order to effectively compress ECG data, we compare a threshold value with the max-min slope difference (MMSD) which is updated at each sample values. If this MMSD value is smaller than the threshold value, then the data is compressed. Conversely, when the MMSD value is larger than threshold value, the data is transmitted after storing the value and the length between the data which is beyond previous threshold level. As a result, it can accurately compress both the region of QRS, P, and T wave that has fast-changing and the region of the base line that slope is changing slow. Therefore, it Is possible to enhance the compression rate and the percent roms difference. In addition, because of the simplicity, this algorithm is more suitable for real-time implementation.

  • PDF

Time-Slotted Scheduling Schemes for Multi-hop Concurrent Transmission in WPANs with Directional Antenna

  • Bilal, Muhammad;Kang, Moonsoo;Shah, Sayed Chhattan;Kang, Shin-Gak
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.374-384
    • /
    • 2014
  • To achieve high-speed (giga-bit) connectivity for short-range wireless multimedia applications, the millimeter-wave (mmWave) wireless personal area networks with directional antennas are gaining increased interest. Due to the use of directional antennas and mmWave communications, the probability of non-interfering transmissions increases in a localized region. Network throughput can be increased immensely by the concurrent time allocation of non-interfering transmissions. The problem of finding optimum time allocation for concurrent transmissions is an NP-hard problem. In this paper, we propose two enhanced versions of previously proposed multi-hop concurrent transmission (MHCT) schemes. To increase network capacity, the proposed schemes efficiently make use of the free holes in the time-allocation map of the MHCT scheme; thus, making it more compact.

Analysis of Dynamics Characteristics for Friction Elements in Automatic Transmission (자동변속기 마찰요소의 동특성 해석)

  • 최영종;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.9-19
    • /
    • 1997
  • In this paper, the modeling and analysis of dynamic characteristics has been carried out for friction clutches and brakes in an automatic transmission. From the operating oil pressure generated by the valve-body, time delay by check valve and the movement of piston has been examined. Also torque capacity and torque transferred at the clutch is studied. Heat capacity and temperature distribution at the reaction plate of clutch are codeled by time-dependent, nonhomogeneous partial differential equation, and brake torque, brake time, and the amount of heat generated are investigated. It is found that the time delay at the check valve is very short but dominant at the spool.

  • PDF