• Title/Summary/Keyword: Transmission range

Search Result 1,863, Processing Time 0.025 seconds

Chronic HBV Infection in Children: The histopathologic classification and its correlation with clinical findings (소아의 만성 B형 간염: 새로운 병리조직학적 분류와 임상 소견의 상관 분석)

  • Lee, Seon-Young;Ko, Jae-Sung;Kim, Chong-Jai;Jang, Ja-June;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.1 no.1
    • /
    • pp.56-78
    • /
    • 1998
  • Objective: Chronic hepatitis B infection (CHB) occurs in 6% to 10% of population in Korea. In ethinic communities where prevalence of chronic infection is high such as Korea, transmission of hepatitis B infection is either vertical (ie, by perinatal infection) or by close family contact (usually from mothers or siblings) during the first 5 years of life. The development of chronic hepatitis B infection is increasingly more common the earlier a person is exposed to the virus, particularly in fetal and neonatal life. And it progress to cirrhosis and hepatocellular carcinoma, especially in severe liver damage and perinatal infection. Histopathology of CHB is important when evaluating the final outcomes. A numerical scoring system which is a semiquantitatively assessed objective reproducible classification of chronic viral hepatitis, is a valuable tool for statistical analysis when predicting the outcome and evaluating antiviral and other therapies. In this study, a numerical scoring system (Ludwig system) was applied and compared with the conventional histological classification of De Groute. And the comparative analysis of cinical findings, family history, serology, and liver function test by histopathological findings in chronic hepatitis B of children was done. Methods: Ninety nine patients [mean age=9 years (range=17 months to 16 years)] with clinical, biochemical, serological and histological patterns of chronic HBV infection included in this study. Five of these children had hepatocelluar carcinoma. They were 83 male and 16 female children. They all underwent liver biopsies and histologic evaluation was performed by one pathologist. The biopsy specimens were classified, according to the standard criteria of De Groute as follows: normal, chronic lobular hepatitis (CLH), chronic persistent hepatitis (CPH), mild to severe chronic active hepatitis (CAH), or active cirrhosis, inactive cirrhosis, hepatocellular carcinoma (HCC). And the biopsy specimens were also assessed and scored semiquantitatively by the numerical scoring Ludwig system. Serum HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc (IgG, IgM), and HDV were measured by radioimunoassays. Results: Male predominated in a proportion of 5.2:1 for all patients. Of 99 patients, 2 cases had normal, 2 cases had CLH, 22 cases had CPH, 40 cases had mild CAH, 19 cases had moderate CAH, 1 case had severe CAH, 7 cases had active cirrhosis, 1 case had inactive cirrhosis, and 5 cases had HCC. The mean age, sex distribution, symptoms, signs, and family history did not differ statistically among the different histologic groups. The numerical scoring system was correlated well with the conventional histological classification. The histological activity evaluated by both the conventional classification and the scoring system was more severe as the levels of serum aminotransferases were higher. In contrast, the levels of serum aminotransferases were not useful for predicting the degree of histologic activity because of its wide range overlapping. When the histological activity was more severe and especially the cirrhosis more progressing, the prothrombin time was more prolonged. The histological severity was inversely related with the duration of seroconversion of HBeAg. Conclusions: The histological activity could not be accurately predicted by clinical and biochemical findings, but by the proper histological classification of the numerical scoring system for the biopsy specimen. The numerical scoring system was correlated well with the conventional histological classification, and it seems to be a valuable tool for the statistical analysis when predicting the outcome and evaluating effects of antiviral and other therapies in chronic hepatitis B in children.

  • PDF

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.

Assessment of Bone Metastasis using Nuclear Medicine Imaging in Breast Cancer : Comparison between PET/CT and Bone Scan (유방암 환자에서 골전이에 대한 핵의학적 평가)

  • Cho, Dae-Hyoun;Ahn, Byeong-Cheol;Kang, Sung-Min;Seo, Ji-Hyoung;Bae, Jin-Ho;Lee, Sang-Woo;Jeong, Jin-Hyang;Yoo, Jeong-Soo;Park, Ho-Young;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.30-41
    • /
    • 2007
  • Purpose: Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with $^{18}F-2-deoxyglucose$ (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. Materials and Methods: The study group comprised 157 women patients (range: $28{\sim}78$ years old, $mean{\pm}SD=49.5{\pm}8.5$) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Results: Six patients(4.4%) showed metastatic bone lesions. Four(66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients(100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). Among 108 osseous metastatic lesions, 76 lesions showed as abnormal uptake on bone scan, and 76 lesions also showed as increased FDG uptake on PET/CT scan. There was good agreement between FDG uptake and abnormal bone scan finding (Kendall tau-b : 0.689, p=0.000). Lesion showed increased bone tracer uptake had higher SUVmax and SUVrel compared to lesion showed no abnormal bone scan finding ($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). The order of frequency of osseous metastatic site was vertebra, pelvis, rib, skull, sternum, scapula, femur, clavicle, and humerus. Metastatic lesion on skull had highest SUVmax and metastatic lesion on rib had highest SUVrel. Osteosclerotic metastatic lesion had lowest SUVmax and SUVrel. Conclusion: These results suggest that FDG-PET/CT is more sensitive to detect breast cancer patients with osseous metastasis. CT scan must be reviewed cautiously skeleton with bone window, because osteosclerotic metastatic lesion did not showed abnormal FDG accumulation frequently.