• Title/Summary/Keyword: Transmission probability

Search Result 686, Processing Time 0.023 seconds

Multiple Eavesdropper-Based Physical Layer Security in SIMO System With Antenna Correlation

  • Sun, Gangcan;Liu, Mengge;Han, Zhuo;Zhao, Chuanyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.422-436
    • /
    • 2020
  • In this paper, we investigate the impact of antenna correlation on secure transmission in a multi-eavesdropper single-input multiple-output (SIMO) system, where the receiver and eavesdroppers are equipped with correlated antennas. Based on the practical passive eavesdropping system, the new closed-form expressions of secrecy outage probability (SOP) and non-zero secrecy capacity probability are derived to explore the effect of antenna correlation on the system with multiple eavesdroppers. To further analyze the secrecy performance of the investigated system, we theoretically derive the expression of asymptotic SOP to clearly show the diversity order and array gain. Finally, Monte Carlo simulations verify the effectiveness of our theoretical results.

Collision Probability md Traffic Processing Time Analysis for RFID System using FHSS Scheme (FHSS 방식을 채용한 RFID 시스템의 충돌 확률 및 트래픽 처리 시간 해석)

  • Cho, Hae-Keun;Lim, Yeon-June;Hwang, In-Kwan;Pyo, Cheol-Sig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1246-1252
    • /
    • 2006
  • In this paper, a collision probability, processing time and traffic capacity analysis algorithm for RFID system using random FHSS and synchronous FHSS is proposed. Service time, duty cycle, traffic intensity and additional delay time required for re-transmission due to collision are considered and the processing delay and frequency channel capacity are analyzed for the steady state operation of the system. The simulation results which show maximum capacity of the system and explain the accuracy of the algorithm are provided.

The Relation of Cell Scale and Call Connection Level for the VBR Trafac in the Wireless ATM Access Transport (무선 ATM 액세스 전달구조에서 VBR 트래픽에 대한 셀 스케일과 호 접속레벨간의 관계)

  • Lee Ha-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.596-601
    • /
    • 2005
  • In this paper it is focused on the relation between CLR(Cell Loss Ratio) and blocking probability in the wireless ATM access transport. Traffic model of wireless ATH access transport is based on the cell scale, burst scale and call connection level. The CLR due to buffer overflow for wireless access node is derived for VBR traffic. The CLR due to transmission errors for wireless channel is derived. Using the CLR for both access node and wireless channel: the CLR of wireless ATM access transport is derived. The relation between CLR and blocking probability is analyzed for VBR traffic to evaluate performance of wireless ATM access transport.

On the Performance of Incremental Opportunistic Relaying with Differential Modulation over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.731-742
    • /
    • 2010
  • We propose an incremental relaying protocol in conjunction with opportunistic communication for differential modulation with an aim to make efficient use of the degrees of freedom of the channels by exploiting a imited feedback signal from the destination. In particular, whenever the direct link from the source to the destination is not favorable to decoding, the destination will request the help from the opportunistic relay (if any). The performance of the proposed system is derived in terms of average bit error probability and achievable spectral efficiency. The analytic results show that the system assisted by the opportunistic relaying can achieve full diversity at low SNR regime and exhibits a 30㏈ gain relative to direct transmission, assuming single-antenna terminals. We also determine the effect of power allocation on the bit error probability BEP) performance of our relaying scheme. We conclude with a discussion on the relationship between the given thresholds and channel resource savings. Monte-Carlo simulations are performed to verify the analysis.

Physical Layer Security in Underlay CCRNs with Fixed Transmit Power

  • Wang, Songqing;Xu, Xiaoming;Yang, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.260-279
    • /
    • 2015
  • In this paper, we investigate physical layer security for multiple decode-and-forward (DF) relaying underlay cognitive radio networks (CRNs) with fixed transmit power at the secondary network against passive eavesdropping attacks. We propose a simple relay selection scheme to improve wireless transmission security based on the instantaneous channel information of all legitimate users and the statistical information about the eavesdropper channels. The closed-form expressions of the probability of non-zero secrecy capacity and the secrecy outage probability (SOP) are derived over independent and non-identically distributed Rayleigh fading environments. Furthermore, we conduct the asymptotic analysis to evaluate the secrecy diversity order performance and prove that full diversity is achieved by using the proposed relay selection. Finally, numerical results are presented to verify the theoretical analysis and depict that primary interference constrain has a significant impact on the secure performance and a proper transmit power for the second transmitters is preferred to be energy-efficient and improve the secure performance.

Analysis on Co-use Performance of System according to Transmission Probability (전송확률에 따른 시스템 공유 성능 분석)

  • Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.173-178
    • /
    • 2011
  • In this paper, we analyze the total performance according to transmit probability of interfering transmitter in hetero systems. We analyze this criteria as a parameter for co-use when hetero systems share the same frequency channels. In order to make an analysis of relationship between transmit probability and performances of two systems. We take into consideration on the case that WLAN is a victim receiver and WiBro is an interfering transmitter. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

On Performance Evaluation of Hybrid Decode-Amplify-Forward Relaying Protocol with Partial Relay Selection in Underlay Cognitive Networks

  • Duy, Tran Trung;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.502-511
    • /
    • 2014
  • In this paper, we evaluate performance of a hybrid decode-amplify-forward relaying protocol in underlay cognitive radio. In the proposed protocol, a secondary relay which is chosen by partial relay selection method helps a transmission between a secondary source and a secondary destination. In particular, if the chosen relay decodes the secondary source's signal successfully, it will forward the decoded signal to the secondary destination. Otherwise, it will amplify the signal received from the secondary source and will forward the amplified signal to the secondary destination. We evaluate the performance of our scheme via theory and simulation. Results show that the proposed protocol outperforms the amplify-and-forward and decode-and-forward protocols in terms of outage probability.

Performance analysis of cellular CDMA networks with power control error in nakagami fading channel (Nakagami 페이딩 채널에서 전력 제어 오차를 고려한 셀룰라 CDMA 네트워크의 성능 분석)

  • 이동도;김동희;박용서;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • We examine the DS/SSMA system which is employing coherent BPSK with RAKE receiver. We adop Nakagami m-distribution as a multipath fading model. First, we analyze the performances of the system in the single cell environment and obtain the other-cell interference according to power control error. And considering the other-cell interference into the analysis of single cell system, we examine the cellular CDMA network. The average BER and outage probability are the figures of merit that characterize the system performance. The required BER, 1E-3, and required outage probability are the figures of merit that characterize the system performance. The requeired BER, 1E-3, and required outage probability, 1% for the voice transmission is considered to acquire the capacity of system.

  • PDF

An Algorithm for Energy Efficient Cooperative Communication in Wireless Sensor Networks

  • Kumar, K. Senthil;Amutha, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3080-3099
    • /
    • 2016
  • In this paper, we propose an algorithm for energy efficient cooperative communication in wireless sensor network (WSN). The algorithm computes the appropriate transmission distance corresponding to optimal broadcast bit error probability, while taking the circuit energy consumption and the number of cooperating nodes into consideration. The algorithm guarantees minimum energy consumption by choosing higher value of bit error probability for cooperative phase and lower value of bit error probability for broadcast phase while maintaining the required end-to-end reliability. The simulation results show that the proposed algorithm provides significant energy saving gain when compared with traditional fixed distance schemes and is suitable for applications demanding energy efficiency with high quality of reception.

A New Physical Layer Transmission Scheme for LPI and High Throughput in the Cooperative SC-FDMA System

  • Li, Yingshan;Wu, Chao;Sun, Dongyan;Xia, Junli;Ryu, Heung-Gyoon
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.457-463
    • /
    • 2013
  • In recent days, cooperative diversity and communication security become important research issues for wireless communications. In this paper, to achieve low probability of interception (LPI) and high throughput in the cooperative single-carrier frequency division multiple access (SC-FDMA) system, a new physical layer transmission scheme is proposed, where a new encryption algorithm is applied and adaptive modulation is further considered based on channel state information (CSI). By doing so, neither relay node nor eavesdropper can intercept the information signals transmitted from user terminal (UT). Simulation results show above new physical layer transmission scheme brings in high transmission safety and secrecy rate. Furthermore, by applying adaptive modulation and coding (AMC) technique according to CSI, transmission throughput can be increased significantly. Additionally, low peak-to-average power ratio (PAPR) characteristic can still be remained due to the uniform distribution of random coefficients used for encryption algorithm.