• Title/Summary/Keyword: Transmission power allocation

Search Result 231, Processing Time 0.023 seconds

An Energy Efficient MAC Protocol Providing Guaranteed Service for Wireless Sensor Network

  • Kim, Dong-Won;Park, Tae-Geon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.123-140
    • /
    • 2011
  • In this paper, we propose an Energy Efficient Media Access Control (EE-MAC) protocol for wireless sensor networks. The proposed scheme is designed to save power consumption and guarantee quality-of-service for real-time traffic. EE-MAC uses the superframe structure which is bounded by the transmission of a beacon frame and can have an active and an inactive portion. The active period is divided into the contention free period (CFP) for real-time traffic transmission and the contention access period (CAP) for non-real-time traffic transmission. We propose the exclusively allocated backoff scheme which assigns a unique backoff time value to each real-time node based on bandwidth allocation and admission control. This scheme can avoid collision between real-time nodes by controlling distributed fashion and take effect a statistical time division multiple access. We also propose the algorithm to change the duty cycle adaptively according to channel utilization of media depending on network traffic load. This algorithm can prolong network lifetime by reducing the amount of energy wasted on idle listening.

A New Resource Allocation with Rate Proportionality Constraints in OFDMA Systems (OFDMA 시스템에서 비율적 전송률 분배를 위한 자원 할당)

  • Han, Seung-Youp;Oh, Eun-Sung;Han, Myeong-Su;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • In this paper, a new adaptive resource allocation scheme is proposed in orthogonal frequency-division multiple access(OFDMA) systems with rate proportionality constraints. The problem of maximizing the overall system capacity with constraints on bit error rate, total transmission power and rate-proportionality for user requiring different classes of service is formulated. Since the optimal solution to the constrained fairness problem is extremely complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. Firstly, the number of subchannels to be assigned to each user is determined based on the users' average signal-to-noise ratio and rate-proportion. Subchannels are subsequently distributed according to the modified max-min criterion. Lastly, based on the subchannel allocation, the optimal power allocation by solving the Language dual problem is proposed. Additionally, in order to reduce the computational complexity, iterative rate proportionality tracking algorithm is proposed for maximizing the capacity together with maintaining the rate proportionality constraint.

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.

An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks (위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식)

  • Park, Unhee;Kim, Hee Wook;Oh, Dae-Sub;Jang, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.298-306
    • /
    • 2015
  • In this paper, we propose an efficient resource allocation scheme for the integrated satellite/terrestrial networks. The proposed scheme is a frequency sharing technique to mitigate the inter-component interferences which can be generated between a satellite beam and terrestrial cells that are operated in the same frequency. The proposed dynamic resource allocation scheme can mitigate the total inter-component interference by optimizing the total transmission power and it can expect a result of which can lead to an increase in capacity. In such a system, the interference situation can be affected by the distributed traffic demands or up/down link communications environments. In this point of view, we evaluate the performance of the total consumed power, the amount of inter-component interference with respect to different traffic distributions and interference environments between the satellite beam and terrestrial systems.

A Study on Evaluation of optimal FAGTS location and capacity (FACTS 기기의 최적 위치 및 용량 산정에 관한 연구)

  • Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1026-1028
    • /
    • 1999
  • In recent deregulation and competitive power market environment, electric utilities plan and operate their systems for economic benefit with secure system condition. Therefore, implementation of Flexible AC Transmission Systems (FACTS) devices can be planned for the efficient utilization of the present system facility. This paper presents a technique to solve the problem about optimal allocation of FACTS devices far the purpose of enhanced system operation.

  • PDF

A Power Control-Based MF-TDMA Resource Allocation Scheme for Next Generation Military Satellite Communication Systems (차기 군 위성통신망 체계에서 이기종 단말 운용을 고려한 전력제어 기반 MF-TDMA 자원할당 기법)

  • Woo, Soon;Park, Hyung-Won;Lee, Ho-Sub;Yoo, Youn-Sang;Jung, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1138-1147
    • /
    • 2012
  • In this paper, an efficient power control based MF-TDMA resource allocation scheme is proposed for next generation military satellite communication systems. The proposed scheme has the flexibility is used to support heterogeneous terminals with differ in transmission capabilities. The method can be divided into two parts : burst size calculation and burst structure determination. At first, we estimate the link budget taken into account a dynamic satellite link state variation. Then, applicable ACM level and burst size is chosen. In burst structure determination phase, we reorganize the burst structure in time-frequency domain by controlling limited power, bandwidth, time resources. In particular, we compensate the power spectral density among different terminals to integrate them in same transponder, Furthermore, we increase the packing efficiency by controlling the ACM level of the burst in applicable power spectral density range. Simulation results show that the method increase the spectral efficiency and burst packing efficiency. In addition, slot allocation rejection ratio is successfully reduced.

Outage Analysis and Optimal Power allocation for Network-coding-based Hybrid AF and DF (네트워크 코딩 기반의 협력통신에서 Hybrid AF and DF 방식의 아웃티지 성능 분석 및 최적 파워 할당 기법)

  • Bek, Joo-Ha;Lee, Dong-Hoon;Lee, Jae-Young;Heo, Jun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.95-107
    • /
    • 2012
  • Network coding was proposed to increase the achievable throughput of multicast in a network. Recently, combining network coding into user cooperation has attracted research attention. For cooperative transmission schemes with network coding, users combine their own and their partners messages by network coding. In previous works, it was shown that adaptive DF with network coding can achieve diversity gain and additional throughput gain. In this paper, to improve performance of conventional protocols and maximize advantage of using network coding, we propose a new network coding based user cooperation scheme which uses adaptively amplify-and-forward and decode-and-forward according to interuser channel status. We derive outage probability bound of proposed scheme and prove that it has full diversity order in the high SNR regime. Moreover, based on the outage bound, we compute optimal power allocation for the proposed scheme.

Performance Evaluation of Pico Cell Range Expansion and Frequency Partitioning in Heterogeneous Network (Heterogeneous 네트워크에서 Pico 셀 범위 확장과 주파수 분할의 성능 평가)

  • Qu, Hong Liang;Kim, Seung-Yeon;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.677-686
    • /
    • 2012
  • In the presence of a high power cellular network, picocells are added to a Macro-cell layout aiming to enhance total system throughput from cell-splitting. While because of the different transmission power between macrocell and picocell, and co-channel interference challenges between the existing macrocell and the new low power node-picocell, these problems result in no substantive improvement to total system effective throughput. Some works have investigated on these problems. Pico Cell Range Expansion (CRE) technique tries to employ some methods (such as adding a bias for Pico cell RSRP) to drive to offload some UEs to camp on picocells. In this work, we propose two solution schemes (including cell selection method, channel allocation and serving process) and combine new adaptive frequency partitioning reuse scheme to improve the total system throughput. In the simulation, we evaluate the performances of heterogeneous networks for downlink transmission in terms of channel utilization per cell (pico and macro), call blocking probability, outage probability and effective throughput. The simulation results show that the call blocking probability and outage probability are reduced remarkably and the throughput is increased effectively.

Multi-Channel Allocation Scheme for Multi-Hop Transmission in Ad-hoc Cognitive Radio Networks (애드혹 인지 무선네트워크에서 멀티 홉 전송을 위한 멀티채널할당기법)

  • Kwon, Young-Min;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • To solve the shortage of radio spectrum and utilize spectrum resource more efficiently, cognitive radio technologies are proposed, and many studies on cognitive radio have been conducted. Multi-hop routing is one of the important technologies to enable the nodes to transmit data further with lower power in ad-hoc cognitive radio networks. In a multi-channel cognitive radio networks, each channel should be allocated to minimize interference to primary users. In the multi-hop routing, channel allocation should consider the inter-channel interference to maximize network throughput. In this paper, we propose multi-channel scheduling scheme which minimizes inter-channel interferences and avoids collision with primary users for the multi-hop multi-channel cognitive radio networks. The proposed scheduling is designed to determine both of routing path and channel selection. The performance of proposed channel allocation scheme is evaluated by the computer simulation in the aspect of capacity and collision rate.

A Measurement Allocation for Reliable Data Gathering in Spatially Corrected Sensor Networks (공간상관 센서네트워크에서 신뢰성 있는 데이터 수집을 위한 측정의 분배)

  • Byun, Sang-Seon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.434-437
    • /
    • 2016
  • In this paper, we consider a measurement allocation problem for gathering reliable data from a spatially correlated sensor field. We allocate the probability of each sensor's being measured considering its marginal contribution in entire data gathering; higher measurement probability is given to a sensor that gives higher reilable data. First we establish a correlation model considering limit in each sensor's transmission power, noise in the process of measurement and transmission, and attenutations in wireless channel. Then we evaluate the reliability of gathered data by estimating distortion error in sink node. We model the measurement allocation problem in spatially correlated sensor field into a cooperative game, and quantifiy each sensor's marginal contribution using Shapley Value. Then, the probability of each sensor's being measured is given in proportion to the Shapley Value.

  • PDF