• Title/Summary/Keyword: Transmission method

Search Result 6,931, Processing Time 0.045 seconds

Analysis on the Dynamic Characteristics of Power Transmission System Using Multi-body Dynamics (다물체계 해석 방법을 이용한 동력전달계의 특성 해석)

  • Woo, Min-Soo;Kong, Jin-Hyung;Lim, Won-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.175-181
    • /
    • 2004
  • This paper presents the main method to analyze the dynamic characteristics of power transmission system using the multi-body dynamics, which is based on the concept of subsystem equation, subsystem assembling, and the self-determination technique for the system degree of freedom. We can model the mechanical components of power transmission system easily with the advantage of multi-body dynamics. Based on the theory, a dynamic simulation program was developed to analyze system performances, transient phenomena, and other dynamic problems. The driving performance of automatic transmission was simulated with using the multi-body dynamics and Newtonian method, and the validity of program was proved by comparing the two kinds of result.

Computationally Efficient 2-D DOA Estimation Using Two Parallel Uniform Linear Arrays

  • Cao, Hailin;Yang, Lisheng;Tan, Xiaoheng;Yang, Shizhong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.806-808
    • /
    • 2009
  • A new computationally efficient algorithm-based propagator method for two-dimensional (2-D) direction-of-arrival (DOA) estimation is proposed, which uses two parallel uniform linear arrays. The algorithm takes advantage of the special structure of the array which enables 2-D DOA estimation without pair matching. Simulation results show that the proposed algorithm achieves very accurate estimation at a computational cost 4 dB lower than that of standard methods.

Real-Time Transmission Method of wireless Control Network Using Zigbee Networks (지그비 망 기반의 무선 제어망 설계를 위한 실시간 전송 기법에 대한 연구)

  • Lee, Jung-Il;Jung, Ji-Won;Kim, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.39-40
    • /
    • 2007
  • In this Paper a transmission algorithm based on Zigbee Networks is proposed. The superframe of IEEE 802. 15.4 is applied to the transmission method of real-time mixed data (periodic data, sporadic data, and non real-time message). The simulation results show the real-time performance of sporadic data is improved by using the proposed transmission algorithm.

  • PDF

A Simulator for Calculating Normal Induced Voltage on Communication Line

  • Heo, Jeong-Yong;Seo, Hun-Chul;Lee, Soon-Jeong;Kim, Yoon Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1394-1400
    • /
    • 2014
  • The current flowing through the overhead transmission lines causes induced voltage on the communication lines, which can be prevented by calculating the induced voltage at the planning stage for overhead transmission line installment through an agreement between the communication and electric power companies. The procedures to calculate the induced voltages, however, are complicated due to the variety of parameters and tower types of the overhead transmission lines. The difficulty necessitates the development of a simulator to measure the induced voltage on the communication lines. This paper presents two simulators developed for this purpose; one using the Data Base (DB) index method and the other using the Graphic User Interface (GUI) method. The simulators described in this paper have been implemented by the EMTP (Electromagnetic Transient Program).

A Mitigation Method to Reduce Magnetic Field of Transmission Lines (송전선로 자계 저감 방법)

  • Kim, Jeong-Boo;Shin, Koo-Yong;Lee, Sung-Doo;Lee, Dong-II
    • Proceedings of the KIEE Conference
    • /
    • 2005.11c
    • /
    • pp.5-7
    • /
    • 2005
  • When 345 kV transmission lines began to be operated in 1976,electrostatic shocks were problems due to high electric field. By reducing the electirc field below 3.5 kV/m, the problems were solved. But recently a transmission line route.is proposed, nearby people strongly object to build the line worrying abour the effect of magnetic field,even though they do not really know the megnetic effect. Some environmentalists insists to reduce to reduce the magnetis field to a few mG near the transmission line. So we have studied the mitigation method to reduce magnetic field by two conductor passive loop.

  • PDF

Bi-directional information transmission in MAGLEV (자기부상열차에서의 양방향 정보전송)

  • Ahn, Sang-Kwon;Park, Jeong-Soo;Chang, Dae-Sik;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.434-436
    • /
    • 1996
  • This paper deals with the signal communication system for MAGLEV which is indispensible to train control with safety and high speed operation. Therefore it is necessary for signal system to ensure high speed transmission. massive transmission, low error rate, and reliability of information. And the ensured information should be transmitted between ground and on-board for safety and high speed operation. For these reasons, we have considered the guaranteed reliability by applying FSK method and HDLC protocol. Because HDLC has the advantages of high efficiency, high reliability, low bit rate, and bit transparency. HDLC is the appropriate method for data transmission in MAGLEV.

  • PDF

A Study of the Development of Power System Model for Performance Test of Transmission Line Protective Relay (송전선로 보호용 보호계전기 시험을 위한 계통모델 개발에 관한 연구)

  • Seo H. C.;Lee H. H.;Kim C. H.;Lee J. W.;Jang B. T.;Gwak N. H.;Kim H. P.;Kim l. D.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.430-432
    • /
    • 2004
  • The standard power system model is needed to test a transmission line protective relay There are two methods to develop a power system model for transmission line protection. First method is based on characteristic power system model, and second method is based on functional power system model. This paper presents a standard power system model for performance test of transmission line protective relay, where the power system model is based on the two methods. And this model is simulated by using RTDS to test a protective relay.

  • PDF

Three-Dimensional Measurements of the Specular Components by Using Direct Phase-Measuring Transmission Deflectometry

  • Na, Silin;Shin, Sanghoon;Kim, Doocheol;Yu, Younghun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1275-1280
    • /
    • 2018
  • We demonstrated transmission direct phase-measuring deflectometry (DPMD) with a specular phase object having discontinuous surfaces by using two displays and a two-dimensional array detector for display and by recording the distorted fringe patterns. Three-dimensional (3D) information was obtained by calculating the height map directly from the phase information. We developed a mathematical model of the phase-height relationship in transmission DPMD. Unlike normal transmission deflectometry, this method supports height measurement directly from the phase. Compared with other 3D measurement techniques such as interferometry, this method has the advantages of being inexpensive and easy to implement.

A Data Transmission Mode Change Method for Improving Energy Efficiency in IoT Environments

  • Lee, Sukhoon;Kim, Kwangsu;Jeong, Dongwon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 2020
  • In general, many IoT devices, including smart phones, use LTE, Wi-Fi, and Bluetooth, and these communication modules generate a lot of energy consumption during periodic data transmission. This paper proposes a method of the data transmission mode change for improving energy efficiency in various communication environments that mobile devices may encounter. We propose an algorithm for setting the mode considering energy efficiency, data transmission performance and cost when the mobile device transmits data, and transmitting the data in an optimized manner according to the state of the mobile device. The proposed algorithm is implemented through experiments on energy efficiency for each communication module, and the scenario is used to verify how efficiently the proposed algorithm uses energy.