• Title/Summary/Keyword: Transmission coefficients

Search Result 394, Processing Time 0.029 seconds

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

Energy-Aware Preferential Attachment Model for Wireless Sensor Networks with Improved Survivability

  • Ma, Rufei;Liu, Erwu;Wang, Rui;Zhang, Zhengqing;Li, Kezhi;Liu, Chi;Wang, Ping;Zhou, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3066-3079
    • /
    • 2016
  • Recent years have witnessed a dramatic increase in topology research of wireless sensor networks (WSNs) where both energy consumption and survivability need careful consideration. To balance energy consumption and ensure survivability against both random failures and deliberate attacks, we resort to complex network theory and propose an energy-aware preferential attachment (EPA) model to generate a robust topology for WSNs. In the proposed model, by taking the transmission range and energy consumption of the sensor nodes into account, we combine the characters of Erdős -Rényi (ER) model and Barabasi-Albert (BA) model in this new model and introduce tunable coefficients for balancing connectivity, energy consumption, and survivability. The correctness of our theoretic analysis is verified by simulation results. We find that the topology of WSNs built by EPA model is asymptotically power-law and can have different characters in connectivity, energy consumption, and survivability by using different coefficients. This model can significantly improve energy efficiency as well as enhance network survivability by changing coefficients according to the requirement of the real environment where WSNs deployed and therefore lead to a crucial improvement of network performance.

Semi-Fragile Image Watermarking for Authentication Using Wavelet Packet Transform Based on The Subband Energy (부대역 에너지 기반 웨이블릿 패킷 변환을 이용한 인증을 위한 세미 프레자일 영상 워터마킹)

  • Park, Sang-Ju;Kwon, Tae-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.421-428
    • /
    • 2005
  • A new method of Semi-fragile image watermarking which ensures the integrity of the contents of digital image is presented. Proposed watermarking scheme embeds watermark in the form of quantization noise on the wavelet transform coefficients in a specific mid frequency subbands selected from a wavelet packet decomposition based on energy distribution of wavelet transform coefficients. By controlling the strength of embedded watermark using HVS (Human Visual System) characteristic, it is imperceptible by a human viewer while robust against non-malicious attack such as compression for storage and/or transmission. When an attack is applied on the original image, it is highly probable that wavelet transform coefficients not only at the exact attack positions but also the neighboring ones are modified. Therefore, proposed authentication method utilizes whether both current coefficient and its neighbors are damaged. together. So it can efficiently detect and accurately localize attacks inflicted on the content of original image. Decision threshold for authentication can be user controlled for different application areas as needed.

Evaluation of Operating Conditions for the Natural Gas Transmission Pipeline in the Arctic Environment (극한지 장거리 천연가스 배관의 운전조건 평가)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2017
  • The operating temperature range of the natural gas pipeline in Arctic environment would be controlled primarily to optimize gas throughput and to minimize the environmental impact resulting from operation of such pipelines. The temperature of the gas as it flows through the pipeline is a function of both the Joule-Thomson effect and the pipe to soil heat transfer. Therefore, the heat transfer and Joule-Thomson effect of the buried natural gas pipeline in this study were carefully considered. Soil temperatures and overall heat transfer coefficients were assumed to be $0{\sim}-20^{\circ}C$ and $0{\sim}5.5W/m^2K$, respectively. The gas temperature and pressure calculations along a pipeline were performed simultaneously at different soil temperatures and overall heat transfer coefficients. Also, this study predicted the phase change and hydrate formation for different soil temperatures and overall heat transfer coefficients using HYSYS simulation package.

Acoustic Band Structures in Two-dimensional Phononic Crystals with a Square Lattice in Water (수중에서 정방형 격자를 갖는 2차원 포노닉 크리스탈의 음향 밴드 구조)

  • Kim, Yoon Mi;Lee, Kang Il;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.335-342
    • /
    • 2015
  • Phononic crystals are composite materials consisting of a periodic arrangement of scattering inclusions in a host material. One of the most important properties of phononic crystals is the existence of band gaps, i.e., ranges of frequencies at which acoustic waves cannot propagate through the structure. The present study aims to investigate theoretically and experimentally the acoustic band structures in two-dimensional (2D) phononic crystals consisting of periodic square arrays of stainless steel solid cylinders with a diameter of 1 mm and a lattice constant of 1.5 mm in water. The theoretical dispersion relation that depicts the relationship between the frequency and the wave vector was calculated along the ${\Gamma}X$ direction of the first Brillouin zone using the finite element method to predict the band structures in the 2D phononic crystals. The transmission and the reflection coefficients were measured in the 2D phononic crystals with 1, 3, 5, 7, and 9 layers of stainless steel cylinders stacked in the perpendicular direction to propagation at normal incidence. The theoretical dispersion relation exhibited five band gaps at frequencies below 2 MHz, the first gap appearing around a frequency of 0.5 MHz. The location and the width of the band gaps experimentally observed in the transmission and the reflection coefficients appeared to coincide well with those determined from the theoretical dispersion relation.

Behaviors of Reflected and Transmitted Waves for Geometric Change of Submerged Breakwater (잠제의 형상 변화에 따른 반사파 및 투과파의 거동특성)

  • Lee, Cheol-Eung;O, Won-Taek
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.139-148
    • /
    • 2000
  • A numerical model is represented to calculate the wave fields such as the reflected waves, the transmitted waves, and depth averaged velocities over submerged breakwaters for the normally incident wave trains of nonlinear monochromatic wave. The numerical model is correctly formulated by using both the finite amplitude shallow water equations with the effects of bottom friction and the explicit dissipative Lax-Wendroff finite difference scheme, also satisfactorily verified by comparison with the other results. The behaviors of reflected and transmitted waves with respect to geometric parameters of submerged breakwater such as the slope, crest depth, and crest width are numerically analyzed in this study. In particular, the reflection and transmission coefficients are quantitatively calculated as the function of geometric parameter of submerged breakwater. It is found that the crest depth among parameters related to practical design may be the most important parameter in designing the submerged breakwater. Therefore, the effective and economic performances of submerged breakwater should be depended on the determination of optimal crest depth.

  • PDF

A Study on Measuring the Speaking Rate of Speaking Signal by Using Line Spectrum Pair Coefficients

  • Jang, Kyung-A;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3E
    • /
    • pp.18-24
    • /
    • 2001
  • Speaking rate represents how many phonemes in speech signal have in limited time. It is various and changeable depending on the speakers and the characters of each phoneme. The preprocessing to remove the effect of variety of speaking rate is necessary before recognizing the speech in the present speech recognition systems. So if it is possible to estimate the speaking rate in advance, the performance of speech recognition can be higher. However, the conventional speech vocoder decides the transmission rate for analyzing the fixed period no regardless of the variety rate of phoneme but if the speaking rate can be estimated in advance, it is very important information of speech to use in speech coding part as well. It increases the quality of sound in vocoder as well as applies the variable transmission rate. In this paper, we propose the method for presenting the speaking rate as parameter in speech vocoder. To estimate the speaking rate, the variety of phoneme is estimated and the Line Spectrum Pairs is used to estimate it. As a result of comparing the speaking rate performance with the proposed algorithm and passivity method worked by eye, error between two methods is 5.38% about fast utterance and 1.78% about slow utterance and the accuracy between two methods is 98% about slow utterance and 94% about fast utterances in 30 dB SNR and 10 dB SNR respectively.

  • PDF

Properties and Crystallization Characteristics of Ge-Se-Te Glasses (Ge-Se-Te계 칼코지나이드 유리의 결정 생성 현상 및 특성)

  • Lee, Yong-Woo;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.239-247
    • /
    • 1995
  • Chalcogenide glasses with compositions of Ge10Se90-xTex(X=0~50 at.%) were prepared in order to investigate the effects of Te substitution on the transmission characteristics of Ge-Se glasses in the 8~12 ${\mu}{\textrm}{m}$ wavelength region. Absorption coefficients were observed to decrease with Te addition, indicating the improved transmission capabilities of Ge-Se-Te glasses as compared to binary Ge-Se glasses. XRD analysis of crystallized glasses suggested the formation of weaker Se-Te and/or Te-Te bonds with addition of Te substituting for Se in stronger Se-Se bonds. Incorporation of Te in excess of 20at% resulted in the formation of hexagonal Te phases when crystallized. It is speculated that the presence of Te-Te bonds with highly metallic bond character resulted in the enhanced crystallization tendencies of glasses. Fromation of Te-rich chains through gradual replacement of Se-Se with Se-Te and/or Te-Te bonds was further supported by decreases in glass transition and crystallization temperatures.

  • PDF

A New Method for Characterization of Composites by Ultrasonics (초음파를 이용한 복합재료 기계적 특성값의 새로운 특정 방법)

  • 장필성;전홍재
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • A new ultrasonic test method is proposed to obtain elastic constants of unidirectional composite materials nondestructively. In the proposed test method, only longitudinal transducers are used to measure wave velocities by through-transmission method. An aluminum wedge and a flat aluminum rectangular block are placed on each side of the test specimen. Oblique incident longitudinal wave is transmitted from a wedge to the specimen and the mode conversions are occurred sequentially at two interfaces between the specimen and aluminium. Measuring wave velocities converted to longitudinal waves in the rectangular block give all information to determine elastic constants of the composites. In order to determine shear stiffness coefficients, transverse wave velocity is measured indirectly from received longitudinal wave. Effects of anisotropy on waves are also considered in this study.

  • PDF

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF