• Title/Summary/Keyword: Transmission Range

Search Result 1,861, Processing Time 0.026 seconds

Thermodynamic Process Design of CaF2 Single Crystal Growth for Optical Applications (광학응용 CaF2 단결정성장을 위한 열역학적 공정설계)

  • Seong-Min Jeong;Hae-Jin Jeon;Yun-Ji Shin;Hyoung-Seuk Choi;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.197-202
    • /
    • 2023
  • Calcium fluoride (CaF2) single crystal is applied to numerous industrial applications, especially for optical uses. To have excellent optical transmission properties, however, CaF2 crystals should be carefully fabricated through liquid-phase crystal growth techniques. In this study, as one of the early stage research activities to grow CaF2 crystals with a good transmittance at the ultraviolet wavelength range, computational thermodynamic models were provided to deepen the understanding of the crystal growing processes of CaF2 under various conditions. To remove point defects and oxygen impurities in the grown CaF2 crystals, the system was thermodynamically evaluated to get optimal process conditions. From the reviews of previous experimental studies, computational thermodynamic approaches were found to be an effective and powerful tool to understand the meaning of the crystal growth processes and to obtain optimal process conditions.

Coastal upwelling observed off the East coast of Korea and variability of passive sound detection environment (동해 연안에서 관측된 용승현상과 수동 음탐환경의 변화)

  • Sang-Shin, Byun;Chang-Bong, Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.601-609
    • /
    • 2022
  • In August 2007, coastal upwelling occurred off the east coast of Korea, and vertical water temperature and salinity data were obtained from a real-time surface ocean buoy. Based on the time series observation data, a vertical sound velocity structure was calculated before, during, and after the occurrence of the coastal upwelling, and how the coastal upwelling affects the sound propagation and detection environment through acoustic modeling considering the horizontal scale and actual seabed topography. As a result of comparing and analyzing the low-frequency (500 Hz) sound transmission loss and the target detection range by depth using the parabolic equation model, it was analyzed that if coastal upwelling occurs, a detection gain of up to about 10 dB can be expected. In addition, through this study, it was confirmed that the characteristics of sound propagation can be greatly changed even in a short period of about 2 to 3 days before and after coastal upwelling.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water

  • Nnabuk Okon Eddy;Rajni Garg;Rishav Garg;Samson I. Eze;Emeka Chima Ogoko;Henrietta Ijeoma Kelle;Richard Alexis Ukpe;Raphael Ogbodo;Favour Chijoke
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • Nanoparticles are known for their outstanding properties such as particle size, surface area, optical and electrical properties. These properties have significantly boasted their applications in various surface phenomena. In this work, calcium oxide nanoparticles were synthesized from periwinkle shells as an approach towards waste management through resource recovery. The sol gel method was used for the synthesis. The nanoparticles were characterized using X-Ray diffractometer (XRD), Fourier Transformed Infra-Red Spectrophotometer (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra violet visible spectrophotometer (UV-visible). While DLS and SEM underestimate the particle diameter, the BET analysis reveals surface area of 138.998 m2/g, pore volume = 0.167 m3/g and pore diameter of 2.47 nm. The nanoparticles were also employed as an adsorbent for the purification of dye (methyl orange) contaminated water. The adsorbent showed excellent removal efficiency (up to 97 %) for the dye through the mechanism of physical adsorption. The adsorption of the dye fitted the Langmuir and Temkin models. Analysis of FTIR spectrum after adsorption complemented with computational chemistry modelling to reveal the imine nitrogen group as the site for the adsorption of the dye unto the nanomaterials. The synthesized nanomaterials have an average particle size of 24 nm, showed a unique XRD peak and is thermally and mechanically stable within the investigated temperature range (30 to 70 ℃).

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Functional graphene sheets-TiO2 nanocomposites and their photocatalytic performance for wastewater treatment

  • R. Aitbelale;A. Timesli;A. Sahibed-dine
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.295-304
    • /
    • 2023
  • In this paper, a powerful photocatalyst based on carbon nanocomposite is developed in order to obtain a new material applicable in water treatment and especially for the discoloration of effluents used in the textile industry. For that, TiO2-graphene nanocomposites have been successfully synthesized by a mixture of Functionalized Graphene Sheet (FGS) and tetrachlorotitanium complexes to form FGS-TiO2 nanocomposite. In the presence of an anionic surfactant, we used a new chemical process to functionalize graphene sheets in order to make them an excellent medium for blocking and preventing the aggregation of TiO2 nanoparticles. The components of these nanocomposites are characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which confirms the successful formation of the FGS-TiO2 nanocomposite. It was found that the TiO2 nanoparticles were dispersed uniformly on the graphene plane which possesses better charge separation capability than pure TiO2. The FGS-TiO2 nanocomposites exhibited higher photocatalytic activity compared to pure TiO2 for the removal of three dyes: such as Methylene Blue (MB), Bromophenol Blue (BB) and Alizarin Red-S (AR) in water. The removal process was fast and more efficient with FGS-TiO2 nanocomposite in daylight (in the absence of UV irradiation) compared to pure TiO2 nanoparticles without and under UV in all pH range.

Electronic Attendance System Using Smart Device and High Frequency Signal

  • Myoungbeom Chung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.103-111
    • /
    • 2023
  • Recently, many universities have used various electronic attendance systems such as NFC, QR code, Sound-QR, Bluetooth BLE authentication, and face recognition to process attendance. However, existing methods have various problems such as attendance errors due to deformation of authentication signals, mis-recognition attendance from outside the classroom, and difficulty to process seat absence during class. Therefore, this study proposes a high-frequency signal-based electronic attendance system to solve these problems and manage more accurate electronic attendance. As the high-frequency signal replaces the BLE signal, and the transmission range of the signal is limited to the classroom, and the signal value can be immediately changed if a change of the signal is needed. To verify the performance of the proposed system, we conducted a comparative experiment with the Bluetooth based electronic attendance system, and as a result, the proposed method showed high accuracy. Thus, the proposed method will be a useful service that can be immediately used in smart device-based electronic attendance system.

Current Studies on Bakanae Disease in Rice: Host Range, Molecular Identification, and Disease Management

  • Yu Na An;Chandrasekaran Murugesan;Hyowon Choi;Ki Deok Kim;Se-Chul Chun
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.195-209
    • /
    • 2023
  • The seed borne disease such as bakanae is difficult to control. Crop yield loss caused by bakanae depending on the regions and varieties grown, ranging from 3.0% to 95.4%. Bakanae is an important disease of rice worldwide and the pathogen was identified as Fusarium fujikuroi Nirenberg (teleomorph: Gibberella fujikuroi Sawada). Currently, four Fusaria (F. fujikuroi, F. proliferatum, F. verticillioides and F. andiyazi) belonging to F. fujikuroi species complex are generally known as the pathogens of bakanae. The infection occurs through both seed and soil-borne transmission. When infection occurs during the heading stage, rice seeds become contaminated. Molecular detection of pathogens of bakanae is important because identification based on morphological and biological characters could lead to incorrect species designation and time-consuming. Seed disinfection has been studied for a long time in Korea for the management of the bakanae disease of rice. As seed disinfectants have been studied to control bakanae, resistance studies to chemicals have been also conducted. Presently biological control and resistant varieties are not widely used. The detection of this pathogen is critical for seed certification and for preventing field infections. In South Korea, bakanae is designated as a regulated pathogen. To provide highly qualified rice seeds to farms, Korea Seed & Variety Service (KSVS) has been producing and distributing certified rice seeds for producing healthy rice in fields. Therefore, the objective of the study is to summarize the recent progress in molecular identification, fungicide resistance, and the management strategy of bakanae.

Design and Development of 200 W TRM on-board for NEXTSat-2 X-band SAR (차세대소형위성2호의 X대역 합성 개구 레이더 탑재를 위한 200 W급 송·수신 모듈의 설계 및 개발)

  • Jeeheung Kim;Hyuntae Choi;Jungsu Lee;Tae Seong Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.487-495
    • /
    • 2022
  • This paper describes the design and development of a high-power transmit receive module(TRM) for mounting on X-band synthetic aperture radar(SAR) of the NEXTSat-2. The TRM generates a high-power pulse signal with a bandwidth of 100 MHz in the target frequency range of X-band and amplifies a low-noise on the received signal. Tx. path of the TRM has output signal level of more than 200 watts (53.01 dB), pulse droop of 0.35 dB, signal strength change of 0.04 dB during transmission signal output, and phase change of 1.7 ˚. Rx. path has noise figure of 3.99 dB and gain of 37.38 ~ 37.46 dB. It was confirmed the TRM satisfies all requirements. The TRM mounted on the NEXTSat-2 flight model(FM) which will be launched using the KSLV-II (Nuri).