• Title/Summary/Keyword: Transmission Electron Microscopy

Search Result 2,337, Processing Time 0.024 seconds

Effect of Ageing Temperature and Time on the Meat Quality of Longissimus Muscle from Hanwoo Steer (숙성온도와 기간이 한우 거세우 배최장근의 육질 특성에 미치는 영향)

  • Kim, Jin-Hyoung;Cho, Soo-Hyun;Seong, Pil-Nam;Hah, Kyung-Hee;Kim, Hak-Kyun;Park, Beom-Young;Lee, Jong-Moon;Kim, Dong-Hun;Ahn, Chong-Nam
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.171-178
    • /
    • 2007
  • This study was conducted to investigate the effect of ageing temperature(0 and $4^{\circ}C$) and time(2, 7, 14, 21, 28, and 49 days) on the meat quality of longissimus muscle from Hanwoo steer. The pH, Warner-Bratzler shear force(WBSF), myofibrillar fragmentation index(MFI), cooking and purge loss, sensory, morphological changes, and amino acid composition were assessed. The pH of longissimus muscle increased significantly(p<0.05) for 21 days at $0^{\circ}C$ and 14 days at $4^{\circ}C$, but decreased thereafter. Longissimus muscle aged from 14 days to 28 days at $4^{\circ}C$ had a lower WBSF than longissimus muscle aged at $0^{\circ}C$(p<0.05). The WBSF of longissimus muscle decreased significantly(p<0.05) with ageing time. The MFI, cooking and purge loss, tenderness, and juiciness scores were higher for longissimus muscle aged at $4^{\circ}C$ than at $0^{\circ}C$. As ageing time increased, the MFI, cooking and purge loss, tenderness, juiciness, and amino acid composition of longissimus muscle increased significantly(p<0.05) with ageing at 0 or $4^{\circ}C$. Transmission electron microscopy showed Z-disk degradation and morphological changes of the myofibrils correlating with increased tenderness during the ageing time. Based on these results, the proper ageing conditions of longissimus muscle of Hanwoo steer were 14 days of ageing at $0^{\circ}C$ or 7 days of ageing at $4^{\circ}C$. However, further study on the application of ageing technology to this industry is necessary for the optimization of ageing conditions for the sub-primals or muscles from Hanwoo beef.

The Anticancer Effect and Mechanism of Photodynamic Therapy Using 9-Hydroxypheophorbide-a and 660 nm Diode Laser on Human Squamous Carcinoma Cell Line. (9-hydroxypheophorbide-a와 660 nm 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전에 대한 연구)

  • Ahn, Jin-Chul
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.770-780
    • /
    • 2009
  • A new photosensitizer, 9-Hydroxypheophorbide-a (9-HpbD-a), was derived from Spirulina platensis. We conducted a series of experiments, in vitro and in vivo, to evaluate the anticancer effect and mechanism of photodynamic therapy using 9-HpbD-a and 660 nm diode lasers on a squamous carcinoma cell line. We studied the cytotoxic effects of pheophytin-a, 9-HpbD-a, 9-HpbD-a red and 660 nm diode lasers in a human head and neck cancer cell line (SNU-1041). Cell growth inhibition was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The effects of 9-HpbD was higher than those of 9-HpbD-a red or pheophytin-a in PDT. We then tested the cytotoxic effects of 9-hydroxypheophorbide-a (9-HpbD-a) in vitro. The cultured SNU-I041 cells were treated with serial concentrations of 9-HpbD-a followed by various energy doses (0, 0.1, 0.5, 3.2 J/$cm^{2}$) and by various interval times (0, 3, 6, 9, 12 hr) until laser irradiation, then MTT assay was applied to measure the relative inhibitory effects of photodynamic therapy (PDT). Optimal laser irradiation time was 30 minutes and the cytotoxic effects according to incubation time after 9-HpbD-a treatment increased until 6 hours, after which it then showed no increase. To observe the cell death mechanism after PDT, SUN-I041 cells were stained by Hoechst 33342 and propidium iodide after PDT, and observed under transmission electron microscopy (TEM). The principal mechanism of PDT at a low dose of 9-HpbD-a was apoptosis, and at a high dose of 9-HpbD-a it was necrosis. PDT effects were also observed in a xenografted nude mouse model. Group I (no 9-HpbD-a, no laser irradiation) and Group II (9-HpbD-a injection only) showed no response (4/4, 100%), and Group III (laser irradiation only) showed recurrence (1/4,25%) or no response (3/4, 75 %). Group IV (9-HpbD-a + laser irradiation) showed complete response (10/16, 62.5%), recurrence (4/16, 25%) or no response (2/16, 12.5%). Group IV showed a significant remission rate compared to other groups (p<0.05). These results suggest that 9-HpbD-a is a promising photosensitizer for the future and that further studies on biodistribution, toxicity and mechanism of action would be needed to use 9-HpbD-a as a photosensitizer in the clinical setting.

Ultra-Structures And $^{14}C$-Mannitol Transport Study of Human Nasal Epithelial Cells Using ALI Culture Technique (ALI 배양법 이용한 비강 점막 상피세포의 미세구조와 $^{14}C$-mannitol 투과도)

  • Kwak, Kyung-Rok;Hwang, Jee-Yoon;Lee, Ji-Seok;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew;Kim, Yoo-Sun;Roh, Hwan-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.2
    • /
    • pp.205-212
    • /
    • 2001
  • Background : The information on nasal transport and the metabolism of peptides have been obtained from pharmacokinetic investigations in experimental animals. However, there are no transport and metabolic studies of human nasal epithelial cells. In this study, the permeability characteristics and the metabolic properties of in vitro human nasal cell monolayers were investigated. Material and Methods : Normal human inferior nasal conchal tissue samples were obtained from patients undergoing endoscopic nasal cavitary surgery. The specimens were cultured in a transwell using an air-liquid Interface (ALI) culture, and the transepithelial electrical resistance (TEER) value of the blank filter and confluent cell monolayers were measured. To determine the % leakage of mannitol, $4{\mu}mol%$ $^{14}C$-labelled mannitol was added and the % leakage was measured every 10 minute for 1 hour. Result : Human nasal epithelial cells in the primary culture grew to a confluent monolayer within 7 days and expressed microvilli. The tight junction between the cells was confirmed by transmission electron microscopy. The TEER value of the blank filter, fifth day and seventh day reached $108.5\;ohm.cm^2$, $141\;ohm.cm^2$ and $177.5\;ohm.cm^2$, respectively. Transcellular % leakage of the $^{14}$-mannitol at 10, 20, 30, 40, 50 and 60 minutes was $35.67{\pm}5.43$, $34.42{\pm}5.60$, $32.75{\pm}5.71$, $31.76{\pm}4.22$, $30.96{\pm}3.49$ and $29.60{\pm}3.68\;%$, respectively. Conclusion : The human nasal epithelial monolayer using ALI culture techniques is suitable for a transcellular permeability study. The data suggests that human nasal epithelial cells In an ALI culture technique shows some promise for a nasal transport and metabolism study.

  • PDF

Morphological, Physiological andd Biochemical Characteristics of Early Senescence Mutant in Rice (Oryza sativa L) (벼의 조기노화 변이체의 형태, 생리 및 생화학적 특성)

  • 이숙영
    • Korean Journal of Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.325-334
    • /
    • 1995
  • The early senescence mutant induced from Gihobyeo by $\gamma-ray$ irradiation was determined. The mutated gene expression was identified with comparing the characteristic of original cultivar. The mutant had so similar the morphological characteristics to original cultivar that it couldn't be distinguished until senescence occurred at about 20 days after heading. Suddenly yellow leaves were observed within a few days due to great decreases in total chlorophyll and various carotenoid contents. Transmission electron microscopy showed the formation of starch granules, distortion of fine structure of leaf cell organelles, especially grana structures, and the decrease in grain filled after senescence occurred. But banding patterns of total proteins and isozymes have not show any differences, The early senescence mutant will be very useful for study material not only on physiological and biochemical properties of plant senescence but also on gene expression regulating senescence which gives great influence on yield potential and its stability.

  • PDF

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR (선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가)

  • Hwang, Sungchul;Jo, Seung-hyeon;Shin, Min-Chul;Cha, Jinseon;Lee, Inwon;Park, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 2016
  • $CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.