• Title/Summary/Keyword: Transmision factor

Search Result 2, Processing Time 0.019 seconds

Surface Dose and Transmission Factor for Vacuum Cushion (Vacuum Cushion 사용시 표면선량과 투과율 평가)

  • 김미화;이병용;전미선
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.74-78
    • /
    • 2002
  • The individual (customized) immobilization has been used to reproduce the patients' set-up on daily base. There are many various devices available commercially. To evaluate dosimetric characteristics of vacuum cushion, we analysed the surface dose and transmission factor for d$_{max}$ when patient is immobilized with vacuum cushion. Experiments were performed with 4 MV (Varian 4/100, USA), 6 MV, 15 MV (Varian CL2100C/D, USA) photon beams and five field sizes (5$\times$5, 10$\times$10, 20$\times$20, 30$\times$30, 40$\times$40 $\textrm{cm}^2$) on each occasion. Outputs were measured from surface of polysterene phantom to d$_{max}$ with four different thicknesses of cushion, which is 12, 32, 48 mm and only vinyl without styroforms. As results, the transmission factor for thicknesses of vacuum cushion was ranged from 0.9953 to 1.0043. The more the thickness of vacuum cushion is thick, the more surface dose delivered to patient is increased. The surface dose vary with the thickness of vacuum cushion for energy and field size. The skin reactions may result. But the variation is not serious in the clinic.

  • PDF

IN-VIVO DOSE RECONSTRUCT10N USING A TRANSMISION FACTOR AND AN EFFECTIVE FIELD CONCEPT (팬텀투과계수와 유효조사면 개념을 이용한 종양선량 확인에 관한 연구)

  • Kim, You-Hyun;Yeo, In-Hwan;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The aim of this study Is to develop a simple and fast method which computes in-vivo doses from transmission doses measured doting patient treatment using an ionization chamber. Energy fluence and the dose that reach the chamber positioned behind the patient is modified by three factors: patient attenuation, inverse square attenuation. and scattering. We adopted a straightforward empirical approach using a phantom transmission factor (PTF) which accounts for the contribution from all three factors. It was done as follows. First of all, the phantom transmission factor was measured as a simple ratio of the chamber reading measured with and without a homogeneous phantom in the radiation beam according to various field sizes($r_p$), phantom to chamber distance($d_g$) and phantom thickness($T_p$). Secondly, we used the concept of effective field to the cases with inhomogeneous phantom (patients) and irregular fields. The effective field size is calculated by finding the field size that produces the same value of PTF to that for the irregular field and/or inhomogeneous phantom. The hypothesis is that the presence of inhomogeneity and irregular field can be accommodated to a certain extent by altering the field size. Thirdly, the center dose at the prescription depth can be computed using the new TMR($r_{p,eff}$) and Sp($r_{p,eff}$) from the effective field size. After that, when TMR(d, $r_{p,eff}$) and SP($r_{p,eff}$) are acquired. the tumor dose is as follows. $$D_{center}=D_t/PTF(d_g,\;T_p){\times}(\frac{SCD}{SAD})^2{\times}BSF(r_o){\times}S_p(r_{p,eff}){\times}TMR(d,\;r_{p,eff})$$ To make certain the accuracy of this method, we checked the accuracy for the following four cases; in cases of regular or irregular field size, inhomogeneous material included, any errors made and clinical situation. The errors were within 2.3% for regular field size, 3.0% irregular field size, 2.4% when inhomogeneous material was included in the phantom, 3.8% for 6 MV when the error was made purposely, 4.7% for 10 MV and 1.8% for the measurement of a patient in clinic. It is considered that this methode can make the quality control for dose at the time of radiation therapy because it is non-invasive that makes possible to measure the doses whenever a patient is given a therapy as well as eliminates the problem for entrance or exit dose measurement.

  • PDF