• Title/Summary/Keyword: Transmembrane domain

Search Result 128, Processing Time 0.029 seconds

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

The Substates with Mutants That Negatively Charged Aspartate in Position 172 Was Replaced with Positive Charge in Murine Inward Rectifier Potassium Channel (Murine Kir2.1)

  • So, I.;Ashmole, I.;Stanfield, P.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.267-273
    • /
    • 2003
  • We have investigated the effect on inducing substate(s) of positively charged residues replaced in position 172 of the second transmembrane domain in murine inward rectifier potassium channels, formed by stable or transient transfection of Kir2.1 gene in MEL or CHO cells. Single channel recordings were obtained from either cell-attached patches or inside-out patches excised into solution containing 10 mM EDTA to rule out the effect of $Mg^{2+}$ on the channel gating. The substate(s) could be recorded with all mutants D172H, D172K and D172R. The unitary current-voltage (I-V) relation was not linear with D172H at $pH_i$ 6.3, whereas the unitary I-V relation was linear at $pH_i$ 8.0. The relative occupancy at $S_{LC}$ was increased from 0.018 at $pH_i$ 8.0 to 0.45 at $pH_i$ 5.5. In H-N dimer, that was increased from 0.016 at $pH_i$ 8.0 to 0.23 at $pH_i$ 5.5. The larger the size of the side chain or $pK_a$ with mutants (D172H, D172K and D172R), the more frequent the transitions between the fully open state and substate within an opening. The conductance of the substate also depended upon the pKa or the size of the side chain. The relative occupancy at substate $S_{LC}$ with monomer D172K (0.50) was less than that in K-H dimer (0.83). However, the relative occupancy at substate with D172R (0.79) was similar to that with R-N dimer (0.82). In the contrary to ROMK1, positive charge as well as negative charge in position 172 can induce the substate rather than block the pore in murine Kir2.1. The single channel properties of the mutant, that is, unitary I-V relation, the voltage dependence of the mean open time and relative occupancy of the substates and the increased latency to the first opening, explain the intrinsic gating observed in whole cell recordings.

Molecular cloning and nucleotide sequence of the gene encoding hemagglutinin-neuraminidase(HN) of Newcastle disease virus isolated from a diseased pheasant in Korea (국내 사육 꿩에서 분리된 뉴켓슬병 바이러스의 hemagglutinin-neuraminidase(HN) 유전자의 클론닝과 염기서열 분석)

  • 장경수;곽길한;장승익;김지영;김태용;송영환;송희종;전무형
    • Korean Journal of Veterinary Service
    • /
    • v.25 no.3
    • /
    • pp.245-257
    • /
    • 2002
  • The gene encoding the HN protein from the CBP-1 strain, a heat stable Newcastle disease virus (NDV) isolated from diseased pheasants in Korea, was characterized by reverse transcriptase- polymerase chain reaction(RT-PCR) and the nucleotide and amino acid sequences were analyzed following cloning of the HN gene. In all of the NDV strains studied, a 1.75 kb size cDNA fragment for the HN gene was generated by RT-PCR and smaller specific band sizes harboring the internal portions of the HN gene were also detected by using four pairs of primers. The RT-PCR was sensitive enough to detect viral transcripts when the virus titer was above 25 hemagglutination units. The amplified 1.75 kb cDNA was cloned into a BamHI site of the pVL1393 Baculo transfer vector. The nucleotide sequences of the 1,758 bp HN gene from the CBP-1 strain were determined by the dye terminator cyclic sequencing method. The gene sequences were compared among the strains of CBP-1, Texas GB, Beaudette C, LaSota, B1 and Ulster. The homology of the CBP-1 HN gene to other HN variants was 97.8% to Texas GB, 98.4% to Beaudette C, 95.4% to LaSota, 95.6% to B1 and 90.2% to Ulster. As the deduced 577 amino acid sequences were compared among the strains, the homology for CBP-1 HN appeared to be 96.7% to Texas GB, 97.9% to Beaudette C, 95.5% to LaSota, 95.5% to B1 and 92.7% to Ulster. It was evident that the amino acid sequences included 5 sites for N-asparagine linked glycosylation and 12 cysteine residues. The three conserved leucine residues within the predicted transmembrane domain of the HN protein are amino acid 30, 37 and 44. The three antigenic sites on the HN protein of NDV are amino acids 347(Glu), 481(Asn) and 495(Glu). These data indicate that the genotype of the CBP-1 strain is more closely associated with the strains of Texas GB and Beaudette C than it is for the LaSota, B1 and Ulster strains.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

Molecular Cloning of Novel Genes Specifically Expressed in Snailfish, Liparis tanakae (꼼치, Liparis tanakae에서 특이하게 발현되는 새로운 유전인자의 검색)

  • 송인선;이석근;손진기
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • Snailfish usually lives at the bottom of the sea and showed typical retrogressive change with specialized tissue structures of skin and skeletons. In order to obtain the specific genes of snailfish, highly expressed in the body, we made subtracted cDNA library and analyzed 200 clones. Totally 200 clones were obtained and sequenced, and among them 62 clones were turned out to be homologous to the known gene, i.e., thioesterase (9), myosin (8), creatine kinase (7), skeletal alpha-actin (6), parvalbumin b (5), ribosomal protein (5), type I collagen (3), muscle troponin (3), dopamine receptor (2), histatin (2), and heat shock protein (2), cystatin (1), lectin (1), statherin (1), secretory carrier membrane protein (1), keratin type I (1), desmin (1), chloroplast (1), muscle tropomyosin (1), reticulum calcium ATPase (1), ribonucleoprotein (1). The remaining 138 clones were low homologous or non-redundant genes through Genbank search. Especially 5 clones were novel and specifically expressed in the body tissues of Snailfish by in situ hybridization. Therefore, we analysed these 5 clones to identify the C-terminal protein structures and motifs, and partly defined the roles of these proteins in comparison with the expression patterns by in situ hybridization. C9O-77, about 5000 bp, was supposed to be a matrix protein expressed strongly positive in epithelium, myxoid tissue, fibrous tissue and collagenous tissue. C9O-116, about 1500 bp, was supposed to be a transmembrane protein which was weakly expressed in the fibrous tissue, epithelium tissue, and myxoid tissue, but strong in muscle tissue. C9O-130, about 1200 bp, was supposed to be an intracytoplasmic molecule usually in the epithelial cells. C9O-161, about 2000 bp, was weakly expressed in epithelium, muscle tissue and myxoid tissue, but specially strong in epithelium. C9O-171, about 1000 bp, was supposed to be a transcription factor containing zinc finger like domain, which was intensely expressed in the epithelium, muscle tissue, fibrous tissue, and in collagenous tissue.

  • PDF

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.