• Title/Summary/Keyword: Translationally Accelerated Motion

Search Result 5, Processing Time 0.016 seconds

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion (병진 가속도 운동을 하는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.349-354
    • /
    • 2001
  • A structure which is accelerated in the chordwise direction induces variation of the bending stiffness due to inertia force. Thus, the characteristic of natural vibration is also changed. This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. The dependence of natural frequencies and modes on the acceleration changes of the plate is investigated. Particularly, a natural frequency loci veering is observed and discussed in the present study.

  • PDF

Dynamic Analysis of Cantilever Plates Undergoing Translationally Oscillating Motion (면내 방향 맥동 운동하는 외팔평판의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.366-371
    • /
    • 2001
  • Dynamic stability of an oscillating cantilever plate is investigated in this paper. The equations of motion include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the multiple scale perturbation method is employed to obtain a stability diagram. The tability diagram shows that relatively large unstable regions exist when the frequency of oscillation is near twice the frequencies of the 1st torsion natural mode and the 1st chordwide bending mode.

  • PDF

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion

  • Yoo, Hong-Hee;Kim, Sung-Kyun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.448-453
    • /
    • 2002
  • This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. An accurate dynamic modeling method, which was introduced in the previous study, is employed to obtain the equations of motion for the vibration analysis. Dimensionless parameters are identified to generalize the conclusions from numerical results. The effects of the dimensionless parameters on the natural frequencies and mode shapes are investigated. Particularly, the magnitude of critical acceleration which causes the dynamic buckling of the structure is calculated. Incidentally, the natural frequency loci veering phenomena are observed and discussed.

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.785-791
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed.

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.268-273
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed

  • PDF