• Title/Summary/Keyword: Translational Acceleration

Search Result 47, Processing Time 0.028 seconds

Modal Analysis Employing In-plane Strain of Cantilever Plates Undergoing Translational Acceleration (병진 가속을 받는 외팔 평판의 면내 변형율을 이용한 진동 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.667-672
    • /
    • 2004
  • A modeling method for the modal analysis of cantilever plates undergoing in-plane translational acceleration is presented in this paper. Cartesian deformation variables are employed to derive the equations of motion and the resulting equations are transformed into dimensionless forms. To obtain the modal equation from the equations of motion, the in-plane equilibrium strain measures are substituted into the strain energy expression based on Von Karman strain measures. The effects of two dimensionless parameters (related to acceleration and aspect ratio) on the modal characteristics of accelerated plates are investigated through numerical studies.

  • PDF

Modal Analysis Employing In-plane Strain of Cantilever Plates Undergoing Translational Acceleration (병진 가속을 받는 외팔 평판의 면내 변형률을 이용한 진동 해석)

  • Yoo Hong Hee;Lim Hong Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.889-894
    • /
    • 2005
  • A modeling method for the modal analysis of cantilever plates undergoing in-plane translational acceleration is presented in this paper. Cartesian deformation variables are employed to derive the equations of motion and the resulting equations are transformed into dimensionless forms. To obtain the modal equation from the equations of motion, the in-plane equilibrium strain measures are substituted into the strain energy expression based on Von Karman strain measures. The effects of two dimensionless parameters (related to acceleration and aspect ratio) on the modal characteristics of accelerated plates are investigated through numerical studies.

Modal Analysis of Composite Trapezoidal Plates Undergoing In-plane Translational Acceleration (면내 병진 가속을 받는 복합재 사다리꼴 평판의 진동 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1486-1491
    • /
    • 2003
  • A modeling method for the modal analysis of a composite trapezoidal plate undergoing in-plane translational acceleration is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles, fiber orientation angle and the acceleration on the modal characteristics of the plate are investigated.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.785-791
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed.

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.268-273
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed

  • PDF

Effects of Angular Velocity Components on Head Vibration Measurements (각속도 성분들이 머리진동 측정치에 미치는 영향)

  • Park Yong Hwa;Cheung Wan Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1E
    • /
    • pp.7-15
    • /
    • 2005
  • This paper addresses issues encountered in measuring the general, 6-degree-of-freedom motion of a human head, A complete mathematical description for measuring the head motion using the six-accelerometer configured bite-bar is suggested, The description shows that the six-axis vibration cannot be completely obtained without the roll, pitch and yaw angular velocity components, A new method of estimating the three orthogonal (roll, pitch and yaw) angular velocities from the six acceleration measurements is introduced. The estimated angular velocities are shown to enable further quantitative error analysis in measuring the translational and angular accelerations at the head. To make this point clear, experimental results are also illustrated in this paper. They show that when the effects of angular velocities are neglected in the head vibration measurement the maximum percentage errors were observed to be more than $3 \%$ for the angular acceleration of the head and to be close to $5 \%$ for its translational acceleration, respectively. It means that the inclusion of all the angular velocity dependent acceleration components gives more accurate measurement of the head vibration.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Ride Quality Evaluation of Agricultural tractor Seats (농용 트랙터의 시트의 진동 승차감 평가)

  • 이종광;박세진;강영선;강이석
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2001.02a
    • /
    • pp.16-21
    • /
    • 2001
  • The ride quality of agricultural tractor seats is evaluated based on the vibration of the human bodies. Tractor ride vibration levels have been measured at the person-seat interface along 7 axes(3 translational axes at the feet, 3 translational axes on a seat surface and 1 axis at the seat back), under different operating conditions. Since one of the most important parameters for ride comfort is the level and duration of the root mean square acceleration experienced, the ride values, such as the seat effective amplitude transmissibility, the component ride value, and the overall ride value based on acceleration root mean square are evaluated for a conventional tractor using frequency weighting functions and axis multiplying factors. The ride indices are also studied considering to the variation of vehicle speed and road profile.

  • PDF

Mobility and Agility of Multi-legged Walking Robot System (다족 보행 로봇 시스템의 이동성 및 민첩성)

  • Shim, Hyung-Won;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.