• Title/Summary/Keyword: Translation of block model

Search Result 4, Processing Time 0.024 seconds

AVEVA Marine Scheme-based Modeling for Reuse of Ship Hull Block Model (조선 선체 블록 모델의 재사용을 위한 AVEVA Marine Scheme 기반 모델링)

  • Son, Myeong-Jo;Kang, Hyungwoo;Kim, Tae-Wan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For the reuse of the existing 3D block model of a ship, we analyze the hull modeling process using AVEVA Marine which is a representative CAD (Computer-Aided Design) system for the shipbuilding. In the AVEVA Marine environment where the design engineer makes 3D model on the 2D view that is so-called 2.5D, it cannot be possible to copy to reuse the block model just simply copying the 3D feature model itself like in the general mechanical CAD system or Smart Marine 3D which are on the basis of the 3D model representation. In this paper, we analyze the scheme file where the 3D model is defined in AVEVA Marine so that we develop the program for the block copy and the translation using this scheme file. It is significant that this program can be immediately available as a real-world application on the AVEVA Marine environment.

Reliability study of 6-axis model surgery simulator for orthognathic surgery (6축 모형수술 시뮬레이터의 정확도에 관한 연구)

  • Jeon, Jae-Ho;Lee, Hyung-Chul;Ji, Hyun-Jin;Jeon, Yeong-Jin;Kim, Yong-Il;Son, Woo-Sung;Park, Soo-Byung;Kim, Sung-Sik;Whang, Dae-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • The purpose of this study was to evaluate the reliability of 6-axis model surgery simulator (6AMSS) for orthognathic surgery. A rectangular parallelepiped plastic block was assembled to model-mounting plate of 6AMSS. Left-right (X), anterior-posterior (Y), up-down (Z) translation and pitching (${\phi}X$), rolling (${\phi}Y$) and yawing (${\phi}Z$) rotation was planned and performed using 6AMSS. The actual translation and rotation were measured with dial gauge and precisional protractor, respectively. Comparison between the planned and actual movements of plastic block for each variable were made using paired t- test. Statistical analysis for X, Y, Z, ${\phi}X$, ${\phi}Y$ and ${\phi}Z$ movement have shown no significant differences between planned and actual movement (P > 0.05). This indicate that model surgery performed with the aid of the 6AMSS is accurate in 3D translation and rotation. The 6AMSS is practically useful for accurate fabrication of surgical splint for orthognathic surgery.

Distributed Shared Memory Scheme for Multi-thread programming (다중쓰레드 프로그래밍을 위한 분산공유메모리 관리 기법)

  • Seo, Dae-Wha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.791-802
    • /
    • 1996
  • In this paper, we discuss a distributed shared memory management scheme based on multi-threaded programming model for a large-scale loosely coupled multiprocessor system. The scheme covers three major issues in the distribued shared memory;the address translation table management, the block coherence maintenance, and the block placement policy. The scheme efficiently resolves the general problems occurred in the distributed shared memory such as a false sharing, an unnecessary replication, a block bouncing, and an address aliasing phenomenon. It also provides the application transparency, good scalability, easy implementation, and multithreaded programming model to users.

  • PDF

The Prediction of the Hydrodynamic Coefficients of Added Mass for Ship in Shallow Waters (천수역 선체 부가질양에 대한 추정 근사식에 관한 연구)

  • 이윤석;김순갑;조익순
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.3
    • /
    • pp.123-132
    • /
    • 2000
  • In order to improve the ship maneuverability, It is important to estimate precisely the hydrodynamic coefficients of added mass forces acting on a ship especially in shallow waters, and simple methods for predicting such hydrodynamic forces Is also very desirable. In the previous paper using 3-Dimension potential flow theory, it has been demonstrated that potential calculation is available to estimate added mass coefficients. The present work is aimed at the suggestion of the simplified formulas for predicting the translation and lateral motion of added mass coefficients in shallow water. So, 3-D potential flow theory is also used to calculate the added mass coefficients in deep and shallow waters for Series 60 model which has 5 different kinds of block coefficients (0.6-0.8), SR196 model and T/S HANNARA. After some series computation, simplified formulas for Predicting the added mass force in shallow waters is suggested based on the computation results of Series 60 model. The formulas consist of the combination of principal dimensions and the water depth; d/B, Cb, d/H. The predicted results are compared with the Computation results for SR196 model and T/S HANNARA. The precision of predicted results by simplified formulas are good enough for the practical use. (d/B : draft-Breadth ratio, d/H draft-Water depth ratio, Cb : Block coefficients).

  • PDF