• 제목/요약/키워드: Transition theory

검색결과 526건 처리시간 0.025초

준 2차원 시스템에서 전자 변위 포텐셜 상호 작용에 의한 Si의 양자 전이 특성 (Qantum Transition properties of Si in Electron Deformation Potential Phonon Interacting Qusi Two Dimensional System)

  • 주석민;조현철;이수호
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.502-507
    • /
    • 2019
  • 우리는 준 2차원 Landau 분할 시스템의 양자 광학 전이 특성을 실리콘(Si)에서 이론적으로 고찰하였다. Squre wall 구속 포텐셜에 의한 전자 구속 시스템에 양자 수송 이론(QTR)을 적용하였습니다. 평형 평균 투영 계획(Equilibrium Average Projection Scheme : EAPS)으로 계획된 Liouville 방정식 방법을 사용하였으며, 양자 전이를 분석하기 위해 포톤 방출 전이과정과 포논 흡수 전이 과정의 두 전이 과정에서 QTLW와 QTLS의 온도와 자기장 의존성을 비교하였습니다. 이 연구를 통해 Si의 QTLW와 QTLS의 온도와 자기장의 증가하는 특성을 발견하였으며, 또한 우세한 산란 과정이 포논 방출 전이 과정이라는 것을 발견했다.

Ab Initio Quantum Mechanical Study for the Photolysis and Unimolecular Decomposition Reactions in the Atmosphere of CF₃OH

  • 김승준;송현섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1493-1500
    • /
    • 1999
  • The electronic transitions from the ground state to low-lying excited states of CF₃OH have been investigated using high level ab initio quantum mechanical techniques. Also the possible photodissociation procedures of CF₃OH have been considered. The highest level employed in this study is TZP CCSD(T) level of theory. The possible four low-lying excited states can result by the excitation of the lone pair electron (n) in oxygen to σ$^*$ molecular orbital in C-O or O-H bond. The vertical transition (n → σ$^*$) energy is predicted to be 220.5 kcal/mol (130 nm) at TZ2P CISD level to theory. The bond dissociation energies of CF₃OH to CF₃O +H and CF₃+OH have been predicted to be 119.5 kcal/mol and 114.1 kcal/mol, respectively, at TZP CCSD level of theory. In addition, the transition state for the unimolecular decomposition of CF₃OH into CF₂O + HF has been examined. The activation energy and energy separation for this decomposition have been computed to be 43.6kcal/mol and 5.0 kcal/mol including zero-point vibrational energy corrections at TZP CCSD(T) level of theory.ed phenols were also estimated.

Finite-Size Errect에 의한 강바성 Gd박막의 상전이온도 이동 (Phase Transition Temperature Shift of a Ferromagenetic Gadelonium Film due to the Finite-Size Effects)

  • 이일수;이의완;이상윤
    • 한국재료학회지
    • /
    • 제3권1호
    • /
    • pp.3-6
    • /
    • 1993
  • Gd박막의 강자성-상자성 상전이 온도(Tc)이동을 조사했다. 강자성-상자성 상전이 온도에서 전기저항이 변화되는 변곡점을 관측하여 Tc를 결졍하였는데, 두께가 6600$\AA$인 Gd박막의 상전이 온도는 bulk상태의 Gd의 전이온도보다 4$\pm$0.$3^{\circ}C$정도 아래로 이동됨을 알았다. 이것은 강자성 Gd박막의 Tc이동에 대한 최초의 측정이며, 실험과 finite-sime scaling이론을 비교 분석했다.

  • PDF

젊은 나이에 발병한 파킨슨병 환자의 건강-질병 전환 경험 과정 (Health-Illness Transition of Patients with Young-Onset Parkinson's Disease)

  • 김성렬;이숙자
    • 대한간호학회지
    • /
    • 제43권5호
    • /
    • pp.636-648
    • /
    • 2013
  • Purpose: The purpose of this study was to explore the health-illness transition of patients with Young-Onset Parkinson's Disease (YOPD). Methods: From June to November 2011, 17 patients with YOPD who visited a neurologic clinic in a tertiary hospital participated in the study. Data were collected through in-depth interviews and analyzed using the grounded theory of Strauss and Corbin. Results: The core category of the participants' health-illness transition emerged as 'reshaping identity following uncontrollable changes'. The participants' health-illness transition process consisted of six phases in sequence: ego withdrawal, loss of role, frustration, change of thought, modification of life tract, and second life. Although most participants proceeded through the six phases chronologically, some returned to the frustration phase and then took up the remaining phases. Conclusion: The study results provide an in-depth understanding of health-illness transition experiences in the participants. These findings suggest a need to develop appropriate nursing intervention strategies according to the different phases in the health-illness transition of patients with YOPD.

이중 전이와 자화 상전이 : 초전도성에 대한 전자 유체의 응축 모델 (Double Transition and Magnetic Phase Transition : An Electron Fluid Condensation Model for Superconductivity)

  • 박성훈;최동식;신두순;김원수
    • 대한화학회지
    • /
    • 제42권6호
    • /
    • pp.599-606
    • /
    • 1998
  • 산화물 초전도체 발견 후 많은 이론적 발전이 있었으나, 초전도 상전이를 정확히 설명하는 이론은 아직 없다 하겠다. 특히 상전이점 근처에서 발견되는 이중전이(double transition)나 다양한 자기적 상전이에 대해서는 아직 정확한 이해가 없는 상태이다. 본 논문에 서는 전자유체의 응축모델을 사용하여 초전도 전이에 있어서, 전자기체의 응축과정이 CONFINEMENT와 TRAP의 두 단계로 일어남을 알았다. 이 두 단계 전이 메카니즘은 이중전이를 잘 설명할 뿐만 아니라, 여러 형태의 초전도에서 보이는 자기적 성질, 특히 다양한 vortex structure를 보여주는 magnetic phase transition을 잘 설명할 수 있었다. 여러 종류의 초전도체들에서 공통적으로 발견되는 double transition과 다양한 magnetic phase transition을 잘 설명할 수 있는지 여부가 초전도 현상 설명의 일반이론으로 적합한지를 결정할 것이다.

  • PDF

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

이행이론을 기반으로 한 폐경이행모형 (A menopausal transition model based on transition theory)

  • 김지순;안숙희
    • 여성건강간호학회지
    • /
    • 제28권3호
    • /
    • pp.210-221
    • /
    • 2022
  • Purpose: The purpose of this study was to construct a hypothetical model based on Meleis and colleagues' Transition Theory and a literature review to explain women's menopausal transition, constructing a modified model considering previous studies and model fit and testing the effects between variables. Methods: With a correlational survey design, middle-aged Korean women aged 40 to 64 years who had experienced menopausal symptoms were recruited and filled out a self-administered study questionnaire. Measures included menopausal symptoms, resilience, social support, menopause management, menopause adaptation, and quality of life. The data were analyzed using SPSS 24.0 and AMOS 24.0. Results: The model fit indices were considered acceptable: 𝛘2/degree of freedom=2.93, standardized root mean residual=.07, comparative fit index=.90, and parsimonious normed fit index=.73. All eight direct-effect paths-from menopausal symptoms to support and adaptation, from support to adaptation and resilience, from resilience to adaptation and management, from management to quality of life, and from adaptation to quality of life-were significant. The explanatory power of the menopause transition model was 63.6%. Conclusion: Women who experience menopausal symptoms may be able to maintain and improve their quality of life if menopause management and menopause adaptation are successful through resilience and social support. Future research is needed to confirm whether strengthening facilitation as a nursing intervention strategy may promote healthy response patterns.

Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms

  • Mananghaya, Michael R.
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.34-46
    • /
    • 2012
  • Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen ($CN_xNT$), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-$CN_xNT$), and (iii) chemical functionalization of (10,0) and (5,5) 3NV-$CN_xNT$ with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV-$CN_xNT$ are significantly enhanced when compared to the pure SWCNTs.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.