• Title/Summary/Keyword: Transition theory

Search Result 529, Processing Time 0.024 seconds

An Unsteady Numerical Method of Autorotation and the Effect of 2D Aerodynamic Coefficients (자동회전의 비정상 수치해법과 2차원 공력계수의 영향)

  • Kim, Hak-Yoon;Sheen, Dong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.121-130
    • /
    • 2009
  • An unsteady numerical simulation method for an autorotating rotor in forward flight was developed. The flapping and rotational equations of motion of autorotation are continuously integrated for given time steps, meanwhile the induced velocity field at disc plane is obtained by the dynamic inflow theory embodying the unteadiness. The transitions from arbitrary initial states to equilibrium states were simulated. Steady autorotations as numerical solutions of equations were predicted by using two sources of blade airfoil data. The simulations using airfoil data which were obtained by a two dimensional Navier-Stokes solver in terms of angles of attack and Reynolds numbers have shown good agreements with wind tunnel experimental results.

Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy (분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동)

  • Kim M. S.;Bang W.;Park W. J.;Chang Y. W.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

Chain Ordering Effects in the Nematic-Isotropic Phase Transition of Polymer Melts

  • Han Soo Kim;Hyungsuk Pak;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.199-206
    • /
    • 1991
  • A statistical thermodynamic theory of thermotropic main-chain polymeric liquid crystalline melts is developed within the framework of the lattice model by a generalization of the well-known procedure of Flory and DiMarzio. According to the results of Vasilenko et al., the theory of orientational ordering in melts of polymers containing rigid and flexible segments in the main chain is taken into account. When the ordering of flexible segments in the nematic melt is correlated with that of rigid mesogenic groups, the former is assumed to be given as a function of the ordering of rigid mesogenic cores. A free energy density that includes short-range packing contributions is formulated. The properties of the liquid-crystalline transiton are investigated for various cases of the system. The results calculated in this paper show not only the order-parameter values but also the first-order phase transition phenomena that are similar to those observed experimentally for the thermotropic liquid-crystalline polymers and show the transitional entropy terms which actually increase upon orientational ordering. In the orientational ordering values, it is shown that mesogenic groups, flexible segments, and gauche energy (temperature) may be quite substantial. Finally, by using the flexibility term, we predict the highly anisotropic mesophase which was shown by Vasilenko et al.

Test of a Multi-Reference Many-Body Perturbation Theory for the Description of Electron Correlations in four Valence Electron States of Transition Metal Atoms

  • Lee, Yoon-Sup;Sun, Ho-Sung;Freed, Karl F.;Hagstrom, S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.262-266
    • /
    • 1986
  • A multi-reference many-body perturbation theory (MRMBPT) method is critically tested in second order by comparing with the corresponding configuration interaction (CI) calculations. Excitation energies of the four-valence-electron states of transition metal atoms and ions are used for the comparison. The agreement between the second order MRMBPT and CI calculations is very reasonable, confirming the reliability of the second order MRMBPT method. The reliability of calculations with the present second order MRMBPT method was only been inferred empirically in the past since most results have been gauged by the agreement with experiment and/or with other MRMBPT calculations based upon different sets of orbitals and configuration spaces. The present MRMBPT method appears to be an efficient ab initio multi-reference method for the calculation of electron correlation effects in atoms and molecules, and it is shown how MRMBPT can be used to estimate core-core and core-valence correlation effects which are often omitted in CI calculations because too many configurations and correlating electrons are involved.

Unveiling the Influence of Corporate Organizational Inertia on Cloud Computing Transition Intentions: An Empirical Inquiry (기업내 조직 관성이 클라우드 컴퓨팅 전환 의도에 미치는 영향에 관한 실증적 연구)

  • Jae Won Kang;Sangyoon Yi
    • Journal of Information Technology Services
    • /
    • v.23 no.3
    • /
    • pp.17-37
    • /
    • 2024
  • This study explores the tendency of corporations and organizations to continue with their current processes despite having incentives for better Information Technology (IT) innovation or transition. In this context, the study argues that organizations may struggle with 'outsourcing inertia,' a well-known concept referring to an organization's deficient adaptability to environmental changes, particularly defined here as the organization's slow adaptation to changes in outsourcing levels. To verify this, the study analyzes how key variables identified from existing IT Outsourcing (ITO) decision-making research and recent studies on cloud computing transitions actually affect a firm's transition intentions. In the process, this study investigates the moderating effect of a firm's outsourcing inertia, utilizing the Technology-Organization-Environment (TOE) framework and the Push-Pull-Mooring (PPM) model based on migration theory to propose a research model. The study aims to contribute to finding strategic approaches necessary for facilitating IT innovation and transition by understanding the impact of outsourcing inertia on the decision-making process related to IT outsourcing. It is important to note that the majority of domestic conglomerates own IT subsidiaries, which significantly influence the process of transitioning to cloud computing. Nevertheless, research on the impact of IT subsidiaries on cloud computing transition is relatively scarce. Based on this background, this study proposes that IT subsidiaries within domestic conglomerates can act as a significant mooring factor of organizational inertia in the decision-making process for adopting cloud computing. Through this, the study seeks to provide strategic insights for overcoming organizational inertia faced by IT subsidiaries during the cloud computing transition process.

Density Functional Theory for Calculating the OH Stretching Frequency of Water Molecules

  • Jeon, Kiyoung;Yang, Mino
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.410-414
    • /
    • 2016
  • The anharmonic frequency of a local OH stretching mode of a water monomer and dimer was calculated using various levels of density functional theory. The quantum chemical potential energy curves as a function of the OH bond distance were calculated, and they were fitted with the Morse potential function to analytically obtain the fundamental transition frequency. By comparing those values with the frequencies similarly calculated using an ab initio quantum chemical method, the coupled cluster theory including both single and double excitations with the perturbative inclusion of triple excitation in the complete basis limit, the accuracy of various density functional methods in the calculation of anharmonic vibration frequency of water molecules was assessed. For a water monomer, X3LYP and B3LYP methods give the best accuracy, whereas for a water dimer, B972, LCBLYP, ${\omega}B97X$, ${\omega}B97$ methods show the best performance.

Free Vibration Analysis of Multi-delaminated Composite Plates (다층간분리된 적층판의 자유진동해석)

  • Taehyo Park;Seokoh Ma;Yunju Byun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.25-32
    • /
    • 2004
  • In this proposed work new finite element model for multi-delaminated plates is proposed. In the current analysis procedures of multi-delaminated plates, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. The numerical results show that the effect of delaminations on the modal parameters of delaminated composites plates is dependent not only on the size, the location and the number of the delaminations but also on the mode number and boundary conditions. Kirchhoff based model have higher natural frequency than Mindlin based model and natural frequency of the presented model is closed to Mindlin based model.

  • PDF

Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

  • Kordkheili, Seyed Ali Hosseini;Mousavi, Taha;Bahai, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.621-629
    • /
    • 2018
  • By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos.

Density Functional Theory Calculations for Chemical Reaction Mechanisms of C4F8

  • Choe, Hui-Cheol;Song, Mi-Yeong;Yun, Jeong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.133-133
    • /
    • 2015
  • Recently, it has been shown that the ${\omega}B97X-D/aVTZ$ method is strongly recommended as the best practical density functional theory(DFT) for rigorous and extensive studies of saturated or unsaturated $C_4F_8$ species because of its high performance and reliability especially for van der Waals interactions. All the feasible isomerization and dissociation paths of $C_4F_8$ molecules were investigated at this theoretical level and rate constants of their chemical reactions were computed by using variational transition-state theory for a deep insight into $C_4F_8$ reaction mechanisms. Fates and roles of C4F8 molecules and their fragments in plasma phases could be clearly explained based on our computational results.

  • PDF

Diffusion Coefficients of Polyimide/N-Methyl-2-Pyrrolidone Systems below Glass Transition Temperature (유리전이온도이하에서의 Polyimide/N-Methyl-2-Pyrrolidone계의 확산계수)

  • 박광승;김덕준
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • The diffusion coefficients in polyimide/N-methyl-2-pyrrolidone (NMP) systems were proposed using tile Vrentas-Duda's hole free volume theory. Several free volume parameters included in the diffusion coefficients were obtained from the fundamental physical properties of polyimide and NMP and group contribution theory, and the pre-exponential diffusion coefficient, D$_{0}$ was also determined from the dynamic swelling behavior of polyimide in NMP solution. The experimental swelling behavior of polyimide films in NMP was well described by the theoretical one using the proposed diffusion coefficient.t.

  • PDF