• Title/Summary/Keyword: Transition metal ion

Search Result 213, Processing Time 0.029 seconds

Electrohemical and optical properties of Ta$_2$O$_5$ thin film electrolyte EC windows (Ta$_2$O$_5$ 박막전해질 EC 창의 전기화학 및 광학적 특성에 관한 연구)

  • 김용혁;백지흠;조원일;윤경석;박인철;주재백
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.231-238
    • /
    • 1997
  • Tantalum oxide thin filme has an amorphous structure and a high resistivity. Its stoichiometric structure was $Ta_2O_{5.3}$ and the transmission ratio was 80%. The high resistivity of $Ta_2O_{5.3}$ thin film electrolyte made an EC windows without electrical shottness, but the bleached/colored cur rent was very low because of the low ion conductivith. Upon adding moisture into the system, the $\Delta$T increased upto 25 %. proton concentration increase was the main cases to improve optical property. The influence of adding precious or transition metal film(~100 $\AA$ thickness) in $Ta_2O_5$layer on the color change performance was observed. The metal insertion layers had formed hydroxide and they behaved as a stable proton source. The transmission diffrnece and cycle life were greatly enhanced in the case of Ti inssertion.The $\Delta$T was 50% and the cycle life was 18, 000.

  • PDF

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.

Quantum Chemical Studies on Nicotinato Lead(II) Complex [Pb(II)(C5H4NCOO)2]

  • Zhao, Pu Su;Li, Rong Qing;Song, Jie;Guo, Meng Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.546-550
    • /
    • 2008
  • The title compound of nicotinato lead(II) complex [Pb$(C_5H_4NCOO)_2$] has been optimized at B3LYP/LANL2DZ and HF/LANL2DZ levels of theory. The calculated results show that the lead(II) ion adopts 2- coordinate geometry, which is the same as its crystal structure and different from the 4-coordinate geometry of isonicotinato lead(II) complex. Atomic charge distributions indicate that during forming the title compound, each nicotinic acid ion transfers their negative charges to central lead(II) ion. The electronic spectra calculated by B3LYP/LANL2DZ level show that there exist two absorption bands, which have some red shifts compared with those of isonicotinato lead(II) complex and the electronic transitions are mainly derived from intraligand $\pi$ -$\pi$ transition and ligand-to-metal charge transfer (LMCT) transition. CIS-HF method is not suitable for the system studied here. The thermodynamic properties of the title compound at different temperatures have been calculated and corresponding relations between the properties and temperature have also been obtained. The second order optical nonlinearity was calculated, and the molecular hyperpolarizability was $1.147754{\times}10^{-30}$ esu.

The Properties of the Absorption Spectra in Tinted Material of Lens and Color Lens (렌즈 염색제와 칼라 렌즈의 광흡수 특성)

  • Kim, Yong-Geun;Park, Sang-An
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 1999
  • The optical absorption spectrum was measured of the tinted powder, tinted solution and tinted lens in the visible regions. The tinted powder was very different with color of tinted lens that the optical absorptions was so higher, composed of the thick-gray color. The optical absorptions of tinted solution were just a little appeared by the energy split of a transition metal ion, so constructed with each color space. The optical absorptions of the tinted lens were appeared with the energy split peaks to a transition metal ion, so its were affected by the color constructions. The optical absorption peaks of each lens were depend on the tinted time. Blue color lens had a lot of absorption in the short wavelength regions than 500nm, and had a little appeared in the high wavelength regions than 500nm. In case of a yellow color, the optical absorptions were appeared quite contrary to the blue color, so these colors had the opponent-colors each other. In case of green color, the optical absorptions had a high in the both edges, had a low in the middle regions. In the pink color, by the optical absorptions form of quite contrary to the green color it, these colors had the opponent-colors each other. In the brown color, the optical absorptions had a maximum values in the short wavelength regions, and it gradually decreased goes by the long wavelength regions.

  • PDF

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

The Electronic Structure and Reactivity of Transition Metal Complexes (III). Effect of Pressure on the Aquation of $[Cr(NH_3)_5(DMF)]^{3+}$ Ion (전이금속 착물의 전자구조 및 화학적 반응성 (제 3 보) $[Cr(NH_3)_5(DMF)]^{3+}$ 이온의 수화반응에 미치는 압력효과)

  • Jong-Jae Chung;Choi Jong-Ha;Eun-Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.582-587
    • /
    • 1989
  • Rates for aquation of $[Cr(NH_3)_5(DMF)]^{3+}$ ion in aqueous acidic solution have been measured by spectrophotometric method at various temperatures and pressures. The volume of activation for the aquation is small negative and lies in the limited range -2.76 ∼ -3.65 $cm^3mol^{-1}$. The entropy and compressibility coefficient of activation are small negative values. From the results of thermodynamic activation parameters, it can be inferred that the aquation of $[Cr(NH_3)_5(DMF)]^{3+}$ ion proceeds through an associative interchange($I_a$) mechanism.

  • PDF

A Comparative Study on the NOx Removal Activities of Metal-ion-exchanged Mg/Cu-ZSM-5 Catalysts in the Treatment of Flue Gas from Stationary Sources (금속이온교환된 Mg/Cu-ZSM-5 촉매를 사용한 배연 탈질 공정에서 De-NOx활성 비교연구)

  • 김재천;이병용;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • In this study, in order to make up its draw-back in Cu-ZSM-5 catalytic system, some of transition metals or alkaline earth metals were cocation-exchanged in Cu-ZSM-5. Among various cocation-ion-exchanged ZSM-5 catalysts, Mg/Cu-ZSM-5 has been found the most active and durable in NOx reduction even at high oxygen content as well as at the presence of water vapor. The role of Mg in ZSM-5 is supposed to prevent the dealumination of aluminum ions in super-cage even at harsh hydro-thermal conditions, and also it seems to stabilize the Cu ions in the structure. In order to prepare commercially available catalysts, Mg/Cu-ZSM-5 catalysts were wash-coated on the surface of honeycomb type monolith, and tested in terms of catalytic activities. As a result, it was found that the catalyst prepared bt the wash-coating showed satisfactorily high NOx conversion for the practical use in SCR process.

  • PDF

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Syntheses of Tetradentate Nitrogen-Oxygen(N2O2)) Ligands with Substituents and the Determination of Stability Constants of Their Heavy(II) Metal Complexes (치환기를 가진 질소-산소(N2O2)계 네 자리 리간드의 합성과 중금속(II)이온 착화합물의 안정도상수 결정)

  • Kim, Sun-Deuk;Seol, Jong-Min
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.421-435
    • /
    • 2012
  • Novel $N_2O_2$ tetradentate ligands, H-3BPD and H-2BPD were synthesized. Hydrochloric acid salts of Br-3BPD, Cl-3BPD, Br-2BPD and Cl-2BPD having Br and Cl substituents at the $para$ position of the phenol hydroxyl group, were synthesized. The ligands were characterized by C. H. N atomic analysis, $^1H$ NMR, $^{13}C$ NMR, UV-visible, and mass spectra. The proton dissociation constants ($logK_n{^H}$) of the phenol hydroxyl group and secondary amine of the synthesized $N_2O_2$ ligands were shown by four step wise values. The orders of the calculated overall proton dissociation constants ($log{\beta}_p$) were Br-3BPD < Cl-3BPD < H-3BPD in case of 3BPD and Br-2BPD < Cl-2BPD < H-2BPD in case of 2BPD respectively. The order agreed well with that of $para$ Hammett substituent constants(${\delta}_p$). The stability constants($logK_{ML}$) of the complexes between the synthesized ligands and transition metal(II) ions agreed with the order of $log{\beta}_p$ of the ligands. The order of the $logK_{ML}$ value of the each transition metal (II) ion was Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II), which agreed well with that of Iriving-Williams series.

Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations

  • Park, Hyoung-Ryun;Oh, Chu-Ha;Lee, Hyeong-Chul;Choi, Jae-Gyu;Jung, Beung-In;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2002-2010
    • /
    • 2006
  • This study examined the quenching of ofloxacin (OFL) and flumequine (FLU) fluorescence by $Cuj^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Mn^{2+}$ in an aqueous solution. The change in the fluorescence intensity and lifetime was measured at various temperatures as a function of the quencher concentration. According to the Stern-Volmer plots, the fluorescence emission was quenched by both collisions (dynamic quenching) and complex formation (static quenching) with the same quencher but the effect of static quenching was larger than that of dynamic quenching. Large static and dynamic quenching constants for both OFL and FLU support significant ion-dipole and orbital-orbital interactions between fluorophore and quencher. For both molecules, the static and dynamic quenching constants by $Cu^{2+}$ were the largest among all the metal quenchers examined in this study. In addition, both the static and dynamic quenching mechanisms by $Cu^{2+}$ were somewhat different from the quenching caused by other metals. Between $Ni^{2+}$ and FLU, a different form of chemical interaction was observed compared with the interaction by other metals. The change in the absorption spectra as a result of the addition of a quencher provided information on static quenching. With all these metals, the static quenching constant of FLU was larger than those of OFL. The fluorescence of OFL was quite insensitive to both the dynamic and static quenching compared with FLU. This property of OFL can be explained by the twisted intramolecular charge transfer in the excited state.