• 제목/요약/키워드: Transition Model

Search Result 1,757, Processing Time 0.028 seconds

Performance predictions and acoustic analysis of the HVAB rotor in hover

  • Mali, Hajar;Benmansour, Kawtar;Elsayed, Omer;Qaissi, Khaoula
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.319-333
    • /
    • 2022
  • This work presents a numerical investigation of the aerodynamics and aero acoustics of the HVAB rotor in hover conditions. Two fully turbulent models are employed, the one-equation Spalart-Allmaras model and the two-equation k-ω SST model. Transition effects are investigated as well using the Langtry-Menter γ-Re θt transition transport model. The noise generation and propagation are being investigated using the Ffows-Williams Hawking model for far-field noise and the broadband model for near-field noise. Comparisons with other numerical solvers and with the PSP rotor test data are presented. The results are presented in terms of thrust and power coefficients, the figure of merit, surface pressure distribution, and Sound pressure level. Velocity, pressure, and vortex structures generated by the rotor are also shown in this work. In addition, this work investigates the contribution of different blade regions to the overall noise levels and emphasizes the importance of considering specific areas for future improvements.

VALIDATION OF TRANSITION FLOW PREDICTION AND WIND TUNNEL RESULTS FOR KU109C ROTOR AIRFOIL (로터 익형 KU109C 풍동시험 및 천이유동 해석결과의 검증)

  • Jeon, S.E.;Sa, J.H.;Park, S.H.;Kim, C.J.;Kang, H.J.;Kim, S.B.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • Transition prediction results are validated with experimental data obtained from a transonic wind tunnel for the KU109C airfoil. A Reynolds-Averaged Navier-Stokes code is simultaneously coupled with the transition transport model of Langtry and Menter and applied to the numerical prediction of aerodynamic performance of the KU109C airfoil. Drag coefficients from the experiment are better correlated to the numerical prediction results using a transition transport model rather than the fully turbulent simulation results. Maximum lift coefficient and drag divergence at the zero-lift condition with Mach number are investigated. Through the present validation procedure, the accuracy and usefulness of both the experiment and the numerical prediction are assessed.

Reconciliation of Split-Site Model with Fundamentalist Formulation Enabled by Equilibrium Assumption

  • Ko, Thong-Sung;Ryu, Hyeong-Won;Cho, Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.931-936
    • /
    • 2003
  • By the use of multi-loop thermodynamic boxes developed here by us, we show that models of enzyme catalysis (e.g., split-site model) developed in an attempt to emphasize the importance of the reactant-state destabilization and, thus, demonstrate misleading nature of the fundamentalist position which defines Pauling's transition-state stabilization as the entire and sole source of enzyme catalytic power, should be reduced to the fundamentalist formulation which completely neglects dynamical aspects of mechanism between the reactant and the transition states and dwells only on events restricted to the reactant and transition states alone, because the splitsite (and other canonical) formulations as well as fundamentalist formulations are based, in common, on equilibrium assumptions stipulated by the thermodynamic box logics. We propose to define the equilibrium assumptions as the requisite and sufficient conditions for the fundamentalist position to enjoy its primacy as central dogma, but not as sufficient conditions for its validity, because it is subjected to contradictions presented by existing data.

General picture of co-nonsolvency for linear and ring polymers

  • Park, Gyehyun;Lee, Eunsang;Jung, YounJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.147-154
    • /
    • 2016
  • Co-nonsolvency is a puzzling phenomenon that a polymer swells in a good solvent individually, but it collapses in a mixture of good solvents. This structural transition with changing solvent environment has been drawing attention due to practical application for stimuli-responsive polymer. The aim of this work is to describe the physical origin of the co-nonsolvency. In this work, we present Monte Carlo simulations for polymer solutions by using simple and general model. We simulate linear and ring polymers to compare their co-nonsolvency behaviors. Calculating Flory exponents and bridging fractions gives a good description for polymer structures. While the polymer structure shows non-monotonous behavior with increasing the cosolvent fraction, the chemical potential decreases monotonously. This indicates that coil-to-globule transition of polymers is purely controlled by free energy and can be regarded as a thermodynamics transition. We also present that ring polymers have higher looping probability than linear polymers, thus the bridging fraction remains higher at high cosolvent fraction. Our study provides a new perspective to understand polymer structure when the polymer "dissolves well" in any solvent.

  • PDF

Comparative study: nonsynonymous and synonymous substitution of SARS-CoV-2, SARS-CoV, and MERS-CoV genome

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2021
  • The direction of evolution can estimate based on the variation among nonsynonymous to synonymous substitution. The simulative study investigated the nucleotide sequence of closely related strains of respiratory syndrome viruses, codon-by-codon with maximum likelihood analysis, z selection, and the divergence time. The simulated results, dN/dS > 1 signify that an entire substitution model tends towards the hypothesis's positive evolution. The effect of transition/transversion proportion, Z-test of selection, and the evolution associated with these respiratory syndromes, are also analyzed. Z-test of selection for neutral and positive evolution indicates lower to positive values of dN-dS (0.012, 0.019) due to multiple substitutions in a short span. Modified Nei-Gojobori (P) statistical technique results also favor multiple substitutions with the transition/transversion rate from 1 to 7. The divergence time analysis also supports the result of dN/dS and imparts substantiating proof of evolution. Results conclude that a positive evolution model, higher dN-dS, and transition/transversion ratio significantly analyzes the evolution trend of severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus.

Robust Signal Transition Density Estimation by Considering Reconvergent Path (재수렴성 경로를 고려한 견실한 신호 전이 밀도 예측)

  • Kim, Dong-Ho;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A robust signal transition density propagation method for a zero delay model is presented to obtain the signal transition density for estimating the power consumption. The power estimation for the zero delay model is a proper criteria for the lower boundary of power consumption. Since the input characteristics are generally unknown at design stage, robust estimation for wide range input characteristics is very important for the power consumption. In this paper, a conventional transition estimation method will be explored. And this exploration will be analyzed with the input/output signal transition behavior and used to propose the robust signal transition density propagation for the power estimation. In order to apply to practical circuits, the reconvergent path, which is crucial to affect the exactness of the power estimation, will be studied and an algorithm to take the reconvergent path into consideration will be presented. In experiment, the proposed methodology shows better robustness, comparable accuracy and elapsed time compared to the conventional methods.

Unveiling the Influence of Corporate Organizational Inertia on Cloud Computing Transition Intentions: An Empirical Inquiry (기업내 조직 관성이 클라우드 컴퓨팅 전환 의도에 미치는 영향에 관한 실증적 연구)

  • Jae Won Kang;Sangyoon Yi
    • Journal of Information Technology Services
    • /
    • v.23 no.3
    • /
    • pp.17-37
    • /
    • 2024
  • This study explores the tendency of corporations and organizations to continue with their current processes despite having incentives for better Information Technology (IT) innovation or transition. In this context, the study argues that organizations may struggle with 'outsourcing inertia,' a well-known concept referring to an organization's deficient adaptability to environmental changes, particularly defined here as the organization's slow adaptation to changes in outsourcing levels. To verify this, the study analyzes how key variables identified from existing IT Outsourcing (ITO) decision-making research and recent studies on cloud computing transitions actually affect a firm's transition intentions. In the process, this study investigates the moderating effect of a firm's outsourcing inertia, utilizing the Technology-Organization-Environment (TOE) framework and the Push-Pull-Mooring (PPM) model based on migration theory to propose a research model. The study aims to contribute to finding strategic approaches necessary for facilitating IT innovation and transition by understanding the impact of outsourcing inertia on the decision-making process related to IT outsourcing. It is important to note that the majority of domestic conglomerates own IT subsidiaries, which significantly influence the process of transitioning to cloud computing. Nevertheless, research on the impact of IT subsidiaries on cloud computing transition is relatively scarce. Based on this background, this study proposes that IT subsidiaries within domestic conglomerates can act as a significant mooring factor of organizational inertia in the decision-making process for adopting cloud computing. Through this, the study seeks to provide strategic insights for overcoming organizational inertia faced by IT subsidiaries during the cloud computing transition process.

Assessing Markov and Time Homogeneity Assumptions in Multi-state Models: Application in Patients with Gastric Cancer Undergoing Surgery in the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.441-447
    • /
    • 2014
  • Background: Multi-state models are appropriate for cancer studies such as gastrectomy which have high mortality statistics. These models can be used to better describe the natural disease process. But reaching that goal requires making assumptions like Markov and homogeneity with time. The present study aims to investigate these hypotheses. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. To assess Markov assumption and time homogeneity in modeling transition rates among states of multi-state model, Cox-Snell residuals, Akaikie information criteria and Schoenfeld residuals were used, respectively. Results: The assessment of Markov assumption based on Cox-Snell residuals and Akaikie information criterion showed that Markov assumption was not held just for transition rate of relapse (state 1 ${\rightarrow}$ state 2) and for other transition rates - death hazard without relapse (state 1 ${\rightarrow}$ state 3) and death hazard with relapse (state 2 ${\rightarrow}$ state 3) - this assumption could also be made. Moreover, the assessment of time homogeneity assumption based on Schoenfeld residuals revealed that this assumption - regarding the general test and each of the variables in the model- was held just for relapse (state 1 ${\rightarrow}$ state 2) and death hazard with a relapse (state 2 ${\rightarrow}$ state 3). Conclusions: Most researchers take account of assumptions such as Markov and time homogeneity in modeling transition rates. These assumptions can make the multi-state model simpler but if these assumptions are not made, they will lead to incorrect inferences and improper fitting.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Role Transition of Senior Year Nursing Students: Analysis of Predictors for Role Transition (간호대학 4학년생이 지각한 간호사로의 역할 이행과 영향 요인)

  • Lee, Worlsook;Uhm, Ju-Yeon;Lee, Taewha
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.20 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • Purpose: The purpose of this study was to identify the perception of role transition from a student nurse to a registered nurse among senior year nursing students and to examine factors affecting their role transition. Methods: A descriptive survey with convenience sampling was conducted in four nursing colleges in Seoul, South Korea. Data were collected using a self-administrated questionnaire. Four instruments including role transition, self-esteem, interpersonal relationships and anxiety during clinical practicum were used and the students'demographics were also collected. A multiple logistic regression was used to identify predictors for the role transition. Results: A total of 233 nursing students were surveyed and final analysis was conducted utilizing 226 participants. Mean point of perceived role transition (5 point scale) was $3.34{\pm}0.44$. In a multiple regression model, high self-esteem, good interpersonal relationships, low anxiety during clinical practicum, and high satisfaction in college life were significant predictors of a smooth transition (Adj. $R^2$=.32, F=22.28, p<.001). Conclusion: The findings suggest that role transition from a student nurse to a registered nurse is facilitated through the establishment of programs to improve self-esteem and interpersonal relationships and to reduce anxiety during clinical practicum.