• Title/Summary/Keyword: Transition Mechnism

Search Result 4, Processing Time 0.019 seconds

A Study on the Performance Analysis of the transition mechanism for Evolving into Next Generation Internet (차세대 인터넷 도입을 위한 전이 메커니즘의 성능 분석에 관한 연구)

  • 황성호;이수욱;임해진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.289-294
    • /
    • 2004
  • The IPv6(Internet Protocol version 6), a next generation Internet protocol. was standardized to solve the problems of the IPv4(Internet Protocol version 4). However, the IPv4 could not be actually converted to the IPv6 at one time. Therefore, the transition mechanism is thought to be very much important to be compatible with the IPv4 naturally and convert to the IPv6 network gradually. Despite of the development of various kinds of the transition mechanism, the IPv6 network was not expanded. The research was mainly made not for current system environment but for technical purposes. This paper investigated the performances through the transition mechanism and examined proper ways being applicable to current environment.

Catalysis Reaction for the Formation of Hydrogen Cyanide from Metal Complex (금속착물로부터 HCN 생성에 대한 촉매반응연구)

  • 박흥재
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.439-443
    • /
    • 1994
  • In aqueous acid solution ${[Cr(CN)_6]}^{3-}$ aquates via a series of stepwise stereospecific reactions to give ${[Cr{(H_2O)}_6]}^{3+}$as the final product.Some of the intermediate cyanoaquo complexes in the sequence have been isolated.These complexes aquate by both acid independent and acid denpendent pathways, the latter involving protonation of the cyano ligands followed by aquation of the singly protonated species. The kinetic data for the aquation of {[CrCN{(H_2O)}_5]}^{2+}$ are consistent with the transition state structure ${[{(H_2O)}_4Cr(CN)-OH-Cr{(H_2O)}_5]}^{3+}$. Addition of $Cr^{2+}$ to solutions of cyanocobalt(III) complexes produces the metastable intermediate${[CrNC{(H_2O)}_5]}^{2+}$ This isomerizes to in a $Cr^{2+}$-catalyzed reaction which occurs by a ligand-bridged electron-change mechnism. From acid catalysis on these aquation reactions, it product HCN. Especially, $HSO_3$-ions do the role of catalyst in the formation of HCN from $CrCN^{3-}$

  • PDF

A study on damage mechanism of transition section in cut and cover tunnel using 3 dimensional numerical analysis (3차원 수치해석을 통한 개착터널내 단면변화구간의 손상미케니즘 연구)

  • Park, Jae-Young;Son, Jeong-Hun;Park, Kwang-Lim;Oh, Young-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.653-666
    • /
    • 2012
  • This study made progress about Demage Mechanism of Transition Section in Cut and Cover Tunnel. For this study, Inspection and test was carried out about Transition Section. After this process, Numerical Analysis was accomplished by 2D, 3D. A result of inspection and test, It couldn't find the reason why the upper slab Demage was detected. So 2D Numerical Analysis was conducted. It was analyzed that the Safety Factor(1.0) was satisfied in 2D. But, the result of 3D Numerical Analysis, The reason was found that the Demage on upper slab was caused by moment change. The Moment was changed by column interval transition. For Retrofitting, Column was added under slab in tunnel. It was found that the addition column decreased upper slab deformation. After this study, It could be find that are important 3D Numerical Analysis as well as 2D Numerical Analysis in case of Transition Section. This Study can help developing construction and maintenance about Tunnel. Finally, It's going to study Retrofitting plans which have minimum influence of Transition Section in Cut and Cover Tunnel.

A study on the cracking mechanism of the welded parts in steel structures for the use of low temperature and high pressure (저온, 고압력용 강재 구조물의 용접부균열 발생과 그 대책에 관한 연구)

  • 김영식;배차헌;구자영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.328-338
    • /
    • 1985
  • When the low temperature service steels are used as materials for welded structure, some problems-brittleness and weld cracking, etc.-occur in welded part due to the change of mechanical and metallurgical characteristics resulted from the thermal cycle during the welding procedure. In this study, the experiments were conducted to investigate the change of mechanical and metallurgical characteristics of the welded part for the low temperature and high pressure service steels. Moreover, the Static and Dynamic Implant Test Method was introduced to this study in order to find out the mechnism of weld cracking. In addition, the fracture toughnesses of welded bond were inspected under the various low temperature environments. Main results obtained are as follows; 1) The effect of the hydrogen on the fatigue characteristics of the weld bond can be estimated by the new self-contrived Dynamic Implant Test equipment. 2) The fine micro-structure and low hardness in the heat affected zone can be obtained by the small heat input multi-pass welding. 3) The susceptibility of the delayed cracking is largely affected by the condition of used electrode. 4) The transition temperature of the fracture surface in weld bond appears to be higher 20 .deg. C than that in base metal.

  • PDF