• Title/Summary/Keyword: Transient structural analysis

Search Result 277, Processing Time 0.027 seconds

Evaluation of the Structural Stability of Platform Screen Door (PSD) due to Train Wind Pressure (열차 진입 시 풍압에 의한 완전 밀폐형 승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.594-600
    • /
    • 2006
  • In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the platform screen door due to train wind pressure. Fluent 6.0 was used to calculate the train wind pressure, and Ansys 10.0 was used to evaluate the structural stability of platform screen door due to train wind pressure. Transient analysis was used to check the design requirements of platform screen door, and quasi-static analysis was introduced to save the calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

A Structural Analysis of the Tracked Vehicle (궤도차량의 차체구조해석)

  • Lee, Young-Shin;Choi, Chang;Jun, Byoung-Hee;Oh, Jae-Moon
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • In this study, static and dynamic transient analysis of tracked vehicle structure with recoil impact load is performed for transient impact and traveling load using ANSYS and ABAQUS FEM codes. When transient impact loads are applied at tracked vehicle, the maximum dynamic Von Mises stress occurs between beam stiffener of upper plate and race ring and stress level is about 390-450 MPa. The results of transient analysis shows similar level and tendency with static stress with dynamic force effect of 1.6. The excessive stresses occur around the race ring for the both cases. When the traveling loads are applied on the tracked vehicle, the maximum Tresca stress occurs around suspension #1 and is about 450 MPa and results of static and nonlinear transient analysis are quite similar.

  • PDF

Study on Transient Structural Load Analysis of Aircraft Suspension Equipment (항공기용 서스펜션 장비의 천이구조하중해석에 대한 연구)

  • Cha, Jinhyun;Chung, Sangjun;Choi, Kwanho
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-30
    • /
    • 2015
  • In this study, a transient structural load analysis system was constructed to calculate the applied load on the suspension equipment corresponding to the aircraft flight conditions based on military specifications. Aircraft flight data (altitude, velocity, acceleration, angle of attack and etc. at aircraft center of gravity) were used as input parameters and the calculated load of the suspension equipment at wings on the left and right side was printed out for the structural load analysis. As a calculation procedure, first of all, load analysis was carried out at the center of gravity of the external store, Secondly, a trial reaction force analysis was conducted on hook and swaybrace of suspension equipment. All procedure of calculations was programed to analyze the structural load automatically. To verify the numerical results, structural load analysis using the experimental flight data was performed.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Comparison of model order reductions using Krylov and modal vectors for transient analysis under seismic loading

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.643-651
    • /
    • 2020
  • Generally, it is necessary to perform transient structural analysis in order to verify and improve the seismic performance of high-rise buildings and bridges against earthquake loads. In this paper, we propose the model order reduction (MOR) method using the Krylov vectors to perform seismic analysis for linear and elastic systems in an efficient way. We then compared the proposed method with the mode superposition method (MSM) by using the limited numbers of modal vectors (or eigenvectors) calculated from the modal analysis. In the calculation, the data of the El Centro earthquake in 1940 were adopted for the seismic loading in the transient analysis. The numerical accuracy and efficiency of the two methods were compared in detail in the case of a simplified high-rise building.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Kim, Dong-Hyun;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter (자이로콥터의 동적 유한요소모델링 및 구조진동해석)

  • Jung, Se-Un;Yang, Yong-Jun;Kim, Hyun-Jung;Je, Sang-Eon;Cho, Tae-Hwan;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

Development of Pre-Postprocessing Toolbox for Elasto-plastic Analysis of Underground Structures with Water Flow (지하수 흐름을 고려한 지하구조계의 탄소성해석에 대한 전-후처리기법의 개발)

  • 김문겸;임성철;이재영;송재성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.79-86
    • /
    • 1997
  • In this study, pre-postprocessing toolbox is developed to perform elasto-plastic analyze of underground structures with transient ground water flow. This toolbox is composed of three modules. The first is the data input processor for the structural analysis. The preprocessing Is using GUI (Graphic User Interface), which is consist of dialog box, pull down, and short-cut icon, etc. The second is the structural analysis module. The analysis is based on the elasto-plastic finite element method involving additional options such as ground excavation effect, transient ground water flow, and rock bolts behavior. The last is the postprocessing module. The postprocessing is able to verify the result of the structural analysis by the graphical simulation which visualizes the element mesh, the node displacements, the element stress states, the stress contour, the ground water surface, and the rock bolt stresses. Since various options are considered separately in this toolbox, it is easy to modify the module of each processing, and to update other functional modules for the given analysis conditions.

  • PDF

Evaluation of the Structural Stability of Platform Screen Door(PSD) (승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Jeon, Jae-Sun;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1190-1197
    • /
    • 2006
  • We have evaluated the structural stability of a platform screen door due to train wind pressure. The platform screen door was installed at the ground and underground station and had 65 meters in length. Also, the platform screen door was a safety device because it was placed between the train and the platform. The finite element analysis was used to calculate the stresses and deflections of platform screen door caused by wind pressure using ANSYS 10.0. Quasi-static analysis was introduced to save calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

  • PDF