• Title/Summary/Keyword: Transient region

Search Result 445, Processing Time 0.033 seconds

Compensation of the Rotor Time Constant of Induction Motor using Stator Current Error (고정자 전류오차를 이용한 유도전동기 회전자 시정수보상)

  • 이무영;김승민;윤경섭;구본호;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.585-591
    • /
    • 1998
  • It is proposed a new compensation method in the rotor time constant of indirect vector controlled induction motor. The proposed scheme is an on-line method using the stator current error that is the difference between current command and estimated current calculated from terminal voltages and currents. As the current error becomes to zero, the rotor time constant in the vector controller approaches the real value. The proposed method shows good performances in the transient region as well as in the steady state region regardless of load torque variation, and it is verified by the computer simulation using SIMULINK in Matlab.

  • PDF

A unified capacitance model of GaAs MESFET (GaAs MESFET의 통합 커패시턴스 모델)

  • 이상흥;송호준;이기준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.158-163
    • /
    • 1996
  • In the conventional GaAs MESFET circuit simulation, the DC and transient simulation results are often failed due to the discontrinuities of the first and second order derivatives arising from the use of separate C-V models in linear, satruration, and transition regions. In this paper, we propose a unified capacitance model for linear, transition, and saturation regions by using a unified channel length modulation effect that is derived by extending the channel length modulation effect in the saturation region to the linear region. Calculated resutls from the proposed capacitance model agree well with 2-D device simulation resutls. Thus, the proposed model is expected to be useful in circuit simulation.

  • PDF

PREDICTION OF THERMAL STRATIFICATION IN A U-BENT PIPE: A URANS VALIDATION

  • Pellegrini, M.;Endo, H.;Ninokata, H.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.33-42
    • /
    • 2012
  • In the present study, CFD is employed to investigate phenomena occurring during a process of thermal stratification in U-bent pipes at transitional Reynolds number. URANS evaluation had been chosen for its low computational costs during transient analysis and for the evaluation of modeling performance in these conditions. Application of CFD at transitional Reynolds number and buoyancy driven flows indeed contains deeper uncertainties in relation to the range of applicability for hydrodynamic and thermal models. The methodology applied in the work points out, through validations with the basic problems constituting the complex stratified phenomenon, the applicability of the current turbulence modeling. Accurate predictions have been found in relation to transitional Reynolds number in bent pipes and region of stability induced by the gravitational field. On the other hand the defects introduced in the unstable region of the U bent pipe, are discussed in relation to the adopted modeling.

Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy (Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

New Speed Detection Method for the Improvement of the Speed Detection Characteristics in the Low Speed Region (저속영역의 속도검출특성 개선을 위한 새로운 속도검출방법)

  • Baek, S.K.;Min, J.J.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.476-478
    • /
    • 1997
  • A new speed detection method using low resolution incremental encoders, especially excellent in the low speed region and in the transient state, is proposed. The half period error of an incremental encoder is greater than the period error. So it's not recommended to quadruple the number of pulses per revolution, because it increase the ripple of speed. To overcome this restriction a speed detection, method has been proposed. But it requires so many latch circuits. Therefore we propose a new speed detection method that has different concept and has fewer latch circuits.

  • PDF

Finite Element Analysis of Fluid Flow with Free Surface by using Grid Refinement of Triangular Elements (삼각형 요소의 격자 세분화를 이용한 자유 표면 유동장의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.939-944
    • /
    • 2003
  • The analysis involves an adaptive grid that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Using the proposed numerical technique, the collapse of a dam is analyzed. The numerical results agree well with the theoretical solutions as well as with the experimental results. Through comparisons with the numerical results of several cases using different types of grids, the efficiency of the proposed technique is verified.

  • PDF

Study on the Combustion Characteristics of Methanol Fuel Droplet (Methanol 연료 액적의 연소 특성에 관한 연구)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

A numerical analysis of precipitation recharge in the region of monsoon climates using an infiltration model

  • Koo, Min-Ho;Kim, Yongje
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.163-167
    • /
    • 2003
  • Based on the transient finite difference solution of Richards' equation, an infiltration model is developed to analyze temporal variation of precipitation recharge in the region of monsoon climates. Simulation results obtained by using time series data of 20-year daily precipitation and pan evaporation indicate that a linear relationship between the annual precipitation and the annual recharge holds for the soils under the monsoon climates with varying degrees of the correlation coefficient depending on the soil types. A sensitivity analysis reveals that the water table depth has little effects on the recharge for the sandy soil, whereas, for the loamy and silty soils, rise of the water table at shallow depths causes increase of evaporation by approximately 100㎜/yr and a corresponding decrease in recharge. A series of simulations for two-layered soils illustrate that the amount of recharge is dominantly determined by the soil properties of the upper layer, although the temporal variation of recharge is affected by both layers.

  • PDF

A Study on Unsteady Thermal Loading of Hydrogen Engine with Dual Injection (이중분사식 수소기관의 비정상 열부하 해석에 관한 연구)

  • Wei, Shin-Whan;Kim, Yun-Young;Kim, Hong-Jun;Lee, Jong-Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • To measure of thermal loading in the combustion chamber of hydrogen engine with dual injection, instantaneous wall-surface temperature and unsteady heat flux of the cylinder head are measured and analyzed. The maximum wall surface temperature is shown in direct injection region which has large heat supplied. Partial and spatial temperatures have slight deviation in transient region of injection, though injection method change suddenly. All of thermal characteristics such as instantaneous temperature, temperature swing and heat flux of hydrogen engine with dual injection are remarkably higher than those of gasoline engine. It means necessity of additional countermeasure of thermal loading.

  • PDF

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.