• Title/Summary/Keyword: Transient performance analysis

Search Result 561, Processing Time 0.025 seconds

Probabilistic Estimation of LMR Fuel Cladding Performance Under Transient Conditions

  • Kwon, Hyoung-Mun;Lee, Dong-Uk;Lee, Byung-Oon;Kim, Young ll;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.144-153
    • /
    • 2003
  • The object of this paper is the probabilistic failure analysis on the cladding performance of WPF(Whole Pin Furnace) test fuel pins under transient conditions, and analysis of the KALIMER fuel pin using the preceding analysis. The cumulative damage estimation and Weibull probability estimation of WPF test are performed. The probabilistic method was adapted for these analyses to determine the effective thickness thinning due to eutectic penetration depth. In the results, it is difficult to assume that a brittle layer depth made by eutectic reaction is all of the thickness reduction due to cladding thinning. About 93% cladding thinning of the eutectic penetration depth is favorable as an effective thickness of cladding. And the unreliability of the KALIMER driver fuel pin under the same WPF test condition is lower than that of the WPF pin because of the higher plenum-fuel volume ratio and lower cladding inner radius vs. thickness ratio. KALIMER fuel pin developed from conceptual design has a more stable transient performance for a failure mechanism due to fission gas buildup than the WPF pin.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Dynamic Performance Simulation of the Propulsion System for the CRW-Type UAV Using SIMULINK (SIMULINK를 이용한 CRW-type UAV 추진시스템의 동적 성능 모사에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including main and rotary ducts, the nozzle subsystem including main and tip jet nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. Transient simulation performance utilized the ICV (Inter-component volume) method and simulated using the SIMULINK. Transient performance analysis was performed on 3 cases. Fuel flow schedules to accelerate from Idle to maximum rotational speed were divided into the step increase of the most severe case and ramp increase cases to avoid the overshoot of turbine inlet temperature, and variations of thrust and the turbine inlet temperature were investigated in some transient analysis cases.

Measurement and Analysis of Frequency Characteristics of Grounding Systems (접지시스템 주파수 특성의 측정과 해석)

  • 최종기;안용호;구선근;박기준;윤진열;정길조;류보혁;김정훈
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.248-252
    • /
    • 2004
  • Since DC ground resistance, which is a good index of the performance of a grounding system in low frequency. does not show the performance in transient state. We measured ground impedances in frequency domain ranging from 0.1 Hz to 900 KHz maximum to quantify the transient grounding performance of 4 types of grounding system. Transfer function was derived from the measured frequency-dependant ground impedance of a grounding grid. A simulation has been performed to verify the transfer function using EMTP (Electro-Magnetic Transient Program).

AN ALGORITHM FOR DETERMINING THE WEIGHTING MATRICES OF THE QUADRATIC PERFORMANCE INDEX IN OPTIMAL CONTROL (최적제어 설계에 있어서의 2차형 하중행렬의 한 결정법)

  • Hwa, Chang-Sun;Kim, Chung-Tek
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.407-410
    • /
    • 1989
  • Optimizing transient response for both tracking reference signals and disturbance rejection is determined by the poles and zeros of the transfer function. Thus, optimal pole assignment and how should weighting matrix for the performance index be chosen is very important to achieve optimum transient response. This paper focus its attention on the choosing and analysis of weighting matrix for optimum pole assignment. Optimum pole assignment is defined for linear time-invariant continuous systems.

  • PDF

Study on the Film Thickness and Pressure of the Transient Line Contact Elastohydrodynamic Lubrication (비정상 상태의 선접촉 탄성유체윤활 유막두께 및 유막압력 특성연구)

  • Cho, Jae-Cheol;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.335-341
    • /
    • 2009
  • Elastohydrodynamic lubrication (EHL) analysis shows that film thickness is very flat in the contact area and pressure distribution is somehow similar to that of Hertzian contact pressure except the outlet region with pressure spike. These typical patterns of EHL film thickness and pressure are the cases under the steady contact conditions of applied loads and speeds. However, many engineering contacts are rather under the conditions of varying loads and contact speeds, and therefore the predictions for endurance life and performance of machine elements with steady EHL analysis are not suitable in many occasions. This study shows the differences in film thickness formation and pressure distribution between steady and transient contact conditions in several contact cases.

A Study on Heat Transfer of an Induction Motor with Cooling Channels under Transient Operation Condition (냉각채널을 지닌 유도전동기의 비정상상태 운전시 열전달)

  • Lee, Jeong-Ho;Park, Sung-Hoon;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.205-212
    • /
    • 2000
  • Induction motors. having axial cooling channels in stator and rotor are designed for better cooling performance. Traction motors are one of those examples. And, thermal analysis gain more attention with the Increased demand of the motors, for reliable operation and life prolongation. was Induced to effective thermal conductivity through modeling. Through. fundamental comparison experiment, heat source experiment and transient state experiment, the induction motor using inverter was examined to produce heat source with frequency level and traced to thermal variation at starting and stopping. And thermal analysis using thermal network was compared with a transient state experiment.

  • PDF

Study on Transient Analysis for Flow Characteristics in DPF (DPF의 유동특성에 관한 과도해석 연구)

  • Shin, Dong-Won;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

Transient Stability Analysis of Wind Turbine Generator Connected to a Weak Grid (약한 계통에 연계된 풍력발전기의 과도안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4494-4499
    • /
    • 2014
  • The margin of transient stability of a weak grid system is very low because of the small short-circuit ratio and large impedance. If the fault of the weak grid is cleared by the protection system, one of the major lines is disconnected after the fault is cleared. This further reduces the system strength. Therefore, it is necessary that a new generation system be added to the weak grid to enhance the transient stability margin. A conventional synchronous generator and wind turbine generator were added to a base grid system. The results of transient stability analysis with additional generators using PSSE were compared. The simulations showed that wind turbine generators provide good damping performance and enhance the transient stability margin based on CCT up to 5 times.

Thermo-Mechanical Analysis for Metallic Fuel Pin under Transient Condition

  • Lee, Dong-Uk;Lee, Byoung-Oon;Kim, Yeong-Il;Hahn, Dohee
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.181-190
    • /
    • 2004
  • Computational models for analyzing the in-reactor behavior of metallic fuel pins under transient conditions in liquid-metal reactors are developed and implemented in the TRAMAC (TRAnsient thermo-Mechanical Analysis Code) for a metal fuel rod under transient operation conditions. Not only the basic models for a fuel rod performance but also some sub-models used for transient condition are installed in TRAMAC. Among the models, a fission gas release model, which takes the multi-bubble size distribution into account to characterize the lenticular bubble shape and the saturation condition on the grain boundary and the cladding deformation model have been developed based mainly on the existing models in the MAC-SIS code. Finally, cladding strains are calculated from the amount of thermal creep, irradiation creep, and irradiation swelling. The cladding strain model in TRAMAC predicts well the absolute magnitudes and gen-eral trends of their predictions compared with those of experimental data. TRAMAC results for the FH-1,2,6 pins are more conservative than experimental data and relatively reasonable than those of FPIN2 code. From the calculation results of TRAMAC, it is apparent that the code is capable of predicting fission gas release, and cladding deformation for LMR metal fuel finder transient operation conditions. The results show that in general, the predictions of TRAMAC agree well with the available irradiation data.