• Title/Summary/Keyword: Transient noise

Search Result 400, Processing Time 0.047 seconds

Shock Response Analysis of Rotor-Bearing System using the State-Space Newmark Method (상태공간 Newmark 기법을 이용한 로터-베어링 시스템의 충격응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Cheol;Kim, Yeong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.242-247
    • /
    • 2004
  • In this study was proposed a transient response analysis technique of a rotor system, applying the generalized FE modeling method of a rotor-bearing system considering a base-transferred shock force and together the state-space Newmark method of direct time integration scheme based on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system with series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and experimental results were carried out. The transient reponses of the rotor were sensitive to duration times and shape-qualities of the shock waves, and overally the analytical results agreed quite well with the experimental ones. Particularly, in cases that the frequencies, $1/(2{\times}duration\;time)$, of the shock waves were close to the critical speed of the rotor-bearing system, resonances occurred and the transient responses of the rotor were amplified.

  • PDF

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

Transient Vibration Analysis of a Rotary Compressor Considering the Coupled Effects of Motor (모터의 연성을 고려한 로터리 압축기의 과도진동 해석)

  • 정의봉;김정훈;안세진;황선웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.847-855
    • /
    • 2002
  • A rotary compressors are used most widely In air-conditioning systems. Noise and vibration of a rotary compressor is an important problems during turning on and off as well as during operating. To estimate the vibration occurring during turning on and off, vibration analysis of a motor-compressor coupled system is required. In this paper, through modeling the motor and solving the forces from the equations of motion of the moving parts, the analysis of vibration of the compressor taking into consideration of the effects of motor and moving parts was performed. The accelerations of accumulator during turning on. turning off and operation are simulated. And simulated accelerations are compared with those of experimental data.

An Experimental Study of Squeal Noise Characteristics for Railway Using a Scale Model Test Rig (축소 모델 실험장치를 이용한 철도 스킬소음의 특성에 대한 실험적 연구)

  • Kim, Jiyong;Hwang, Donghyeon;Lee, Junheon;Kim, Kwanju;Kim, Jaechul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.352-360
    • /
    • 2015
  • Squeal noise is a harsh, high-pitched sound that occurs when railways are running at sharp curve tracks. The cause of squeal noise is known to be the transient lateral traction force between wheel and rail. Field measurements are too difficult to control the parameters. Thus, the scaled test rig should have been made in order to investigate the generating mechanism of squeal noise. The unique feature of our test rig, HSTR(Hongik Squeal Testing Rig), is that DOFs of its wheelset are as close to as those of the real railway. The attack angle and running speed of the rail roller are controlled in real time for simulating a transient characteristic of driving curve. The environment conditions, such as given axle load, running speed, and wheel's yaw angle have been identified for generating squeal noise and the squeal noise itself has been measured. The relation between wheel creepage and creep force in lateral direction and the criteria for squeal noise have been investigated, which results has been verified by finite element method.

Influences of an Experimental Exposure to Excavator Noise on the Cardiac Factors and Cerebral Hemodynamics

  • Hyun Kyung-Yae;Choi Seok-Cheol;Oh Kwang-Seok;Kwon Heun-Young;Kim Jai-Young;Kim Tae-Un
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.397-405
    • /
    • 2005
  • Noise may cause damage of the auditory system, hypertension, and cardiovascular disease. However, we haven't the data enough to be available for understanding various effects of noise on the human body. The current study was prospectively designed to investigate the changes of the cardiac factors and cerebral hemodynamics following a transient exposure to noise in young people. 80 subjects (mean aged $23.45\pm2.40$ years) participated in this experiment and were exposed to excavator-noise with 90 decibels for 15 minutes using ear-phone. Cardiac factors such as heart rate (HR), blood pressure (BP) and heart rate-systolic pressure product (RPP), and cerebral hemodynamics such as mean blood flow velocities (Vm), pulsatility indexes (PI), resistance indexes (RI) and mean blood flow velocities at breathing-hold (Vh) in the middle (MCA), anterior (ACA) and posterior cerebral arteries (PCA) were measured before (baseline) and during the noise-exposure. Although there were individual differences in above mentioned parameters, HR, systolic and diastolic BP, RPP, MCA-Vm, MCA-PI, MCA-RI, ACA-Vm, ACA-PI, ACA-RI, PCA-Vm, PCA-PI, and PCA-RI during the noise-exposure decreased compared with the baselines (P<0.05 or P<0.01), The findings of the present study suggest that a transient exposure to excavator-noise at rest causes changes in the cardiac factors and cerebral hemodynamics with individual differences. Further studies need to be carried out for clarifying the effects of longer exposure and combined mental activity with noise exposure.

  • PDF

The Efficiency of a Spring Mass Dampers System for the Control of Vibrations and Structure-borne Noise (진동 및 고체음 제어를 위한 스프링 매스댐퍼계의 효과)

  • ;;;;Heiland, D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.147-147
    • /
    • 1993
  • All types of dynamic excitation, periodical, pulse or transient in vertical, horizontal or all three directions can be effectively reduced by vibration isolation systems. Typical elements for vibration isolation control are spring units consisting of a group of helical compression springs. In all cases of shock, transient or random excitation energy absorbing dampers have to be added to the spring units in order to reduce system response in the frequency range near the natural frequency of the isolation system. The same isolation system of spring units and viscos-dampers has been used since 1979 for passive protection of buildings and structures has been proved to by very advantageous for vibration and structure borne noise control. Not only because of high vertical flexibility of the spring units, compared for example with typical rubber or neoprene mounts out also because of the horizontal of flexibility, which can be adapted by modifying the spring dimensions to nearly every requirement. It is just normal to use the same basic elements for passive isolation as for active isolation.

  • PDF

Reduction of Aeroacoustic Noise from Intake Head of a Vacuum Cleaner (진공청소기 흡입유로의 공력소음 개선)

  • Koo, Jeong-Su;Hwang, Won-Gul;Oh, Il-Kwon;Oh, Jang-Guen;Song, Hwa-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.202-207
    • /
    • 2006
  • The aeroacoustic noise from intake head of a vacuum cleaner is caused by complicated transient pressure fluctuation and it greatly affects the overall SPL of the vacuum cleaner. In this study, we intended to decrease the overall SPL by reducing the aeroacoustic noise from intake head. In the first the place, we analyzed the aeroacoustic noise from the unsteady fluid analysis of intake head. And then, we grasped the dominant frequency band from the aeroacoustic noise by comparing the spectrum distributions between examinations and analyses. Also, we systematically investigated the aeroacoustic noise sources from each part composing the intake head. Consequently, we redesigned each part of the dominant noise sources and suggested the modified intake head, resulting in the reduction ortho overall SPL by 3.6dB(A).

  • PDF