• Title/Summary/Keyword: Transient model analysis

Search Result 978, Processing Time 0.033 seconds

The Simplified Model For Switching Transient Characteristics Analysis Of SI Thyristor (Static Induction Thyristor의 시동특성해석)

  • Lee, Min-Keun;Park, Man-Su;Ko, Hwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1679-1680
    • /
    • 2006
  • 본 연구의 목적은 Pspice를 이용하여 SI Thyristor의 구조적인 특징과 스위칭 동작을 설명하면서도 비교적 간략화된 등가 모델을 개발하는 것에 있다. 이러한 목표로 등가모델은 SI Thyristor의 구조적 형태에 기반을 두어 BJT 소자를 이용한다. 또 게이트 구조와 스위칭 매커니즘을 고려한 MOSFET, Steady state Turn on 상태에서 dominant 모델인 PIN Diode로 구성되어 있다. 개발된 등가모델을 스너버회로와 함께 스위칭 과도응답을 시뮬레이션하였으며 그 결과는 실제 실험결과와 비교하여 검증하였다. 비교적 간단하게 고안된 회로를 통해 Turn On/off 동작에서 스위칭 특성을 예측할 수 있으므로 펄스파워용 스위치로서 SI Thyristor의 시동특성을 해석하는 데 본 등가모델을 활용할 수 있을 것으로 전망한다.

  • PDF

Time Domain Based Digital Controller for Buck-Boost Converter

  • Vijayalakshmi, S.;Sree Renga Raja, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1551-1561
    • /
    • 2014
  • Design, Simulation and experimental analysis of closed loop time domain based Discrete PWM buck-boost converter are described. To improve the transient response and dynamic stability of the proposed converter, Discrete PID controller is the most preferable one. Discrete controller does not require any precise analytical model of the system to be controlled. The control system of the converter is designed using digital PWM technique. The proposed controller improves the dynamic performance of the buck-boost converter by achieving a robust output voltage against load disturbances, input voltage variations and changes in circuit components. The converter is designed through simulation using MATLAB/Simulink and performance parameters are also measured. The discrete controller is implemented, and design goal is achieved and the same is verified against theoretical calculation using LabVIEW.

A Practical Stability Control Strategy for DC/DC Converters

  • Jiang, Lin;Li, Po
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1232-1240
    • /
    • 2018
  • This paper aims at designing an intelligent controller, based on control Lyapunov Function strategy integrated with fabricating discrete model of Buck and Boost converters and analyzing energy changes during the DC/DC progress to realize tracing reference current on Buck and Boost converters. In addition, practical stability phenomenon research and transient performance analysis has been proposed to give an insight to the influence of controller parameters in achieving an enhanced output performance and how the time of sample period affect the error of practical stability will be illustrated. The novelty of this controller in comparison to other schemes lies in the improved performance of practical stability.

Development of wind power generator system model using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전 시스템 모델 개발)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2000-2001
    • /
    • 2007
  • Wind power generation system based on the PSCAD/EMTD is proposed in this paper for the simulations under the real weather conditions. Real field data of weather condition is interfaced to PSCAD/EMTDC using Fortran program interfaced method. And a new turbine component is developed using characteristic equation of a wind turbine and pitch angle control algorism. The generator output and current supplied into utility can be obtained by the transient analysis using PSCAD/EMTDC.

  • PDF

Analysis of Transmission Infrared Laser Bonding for Polymer Micro Devices (폴리머 마이크로 장치에 대한 레이저 투과 마이크로 접합)

  • Kim, Joo-Han;Shin, Ki-Hoon
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.55-60
    • /
    • 2005
  • A precise bonding technique, transmission laser bonding using energy transfer, for polymer micro devices is presented. The irradiated IR laser beam passes through the transparent part and absorbed on the opaque part. The absorbed energy is converted into heat and bonding takes place. In order to optimize the bonding quality, the temperature profile on the interface must be obtained. Using optical measurements of the both plates, the absorbed energy can be calculated. At the wavelength of 1100nm $87.5\%$ of incident laser energy was used for bonding process from the calculation. A heat transfer model was applied for obtaining the transient temperature profile. It was found that with the power of 29.5 mW, the interface begins to melt and bond each other in 3 sec and it is in a good agreement with experiment results. The transmission IR laser bonding has a potential in the local precise bonding in MEMS or Lab-on-a-chip applications.

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.681-697
    • /
    • 2016
  • The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

Time-dependent Analysis of High Strength Concrete Using Material Characteristics Model (물성치 모델개발을 통한 고강도콘크리트의 시간의존 해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1096-1101
    • /
    • 2008
  • Concrete is shown the time dependent behavior after placing. The time dependent behavior of normal strength concrete that is used usually in present, were already examined closely lots of parameters by several investigators. however, high strength concrete is that the material characteristics are not definite and the experimental data are lacking. So, The goal of this study is to propose the material characteristics models, and to develop the routine of the time dependent behavior above 60 MPa. The thermal conductivity, the specific heat, the moisture diffusion coefficient, and the surface coefficient are proposed the suitable models through the parametric study. The structural element is used the 8-node solid element. The matrix equation is developed considering the transient heat transfer and moisture diffusion theory. The application of the time dependent behavior is used the finite differential method.

  • PDF

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

Study on relocation behavior of debris bed by improved bottom gas-injection experimental method

  • Teng, Chunming;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.111-120
    • /
    • 2021
  • During the core disruptive accident (CDA) of sodium-cooled fast reactor (SFR), the molten fuel and steel are solidified into debris particles, which form debris bed in the lower plenum. When the boiling occurs inside debris bed, the flow of coolant and vapor makes the debris particles relocated and the bed flattened, which called debris bed relocation. Because the thickness of debris bed has great influence on the cooling ability of fuel debris in low plenum, it's very necessary to evaluate the transient changes of the shape and thickness in relocation behavior for CDA simulation analysis. To simulate relocation behavior, a large number of debris bed relocation experiments were carried out by improved bottom gas-injection experimental method in this paper. The effects of different experimental factors on the relocation process were studied from the experiments. The experimental data were also used to further evaluate a semi-empirical onset model for predicting relocation.

Multi-dimensional finite element analyses of OECD lower head failure tests

  • Jang Min Park ;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4522-4533
    • /
    • 2022
  • For severe accident assessment of reactor pressure vessel (RPV), it is important to develop an accurate model that can predict transient thermo-mechanical behavior of the RPV lower head under the given condition. The present study revisits the lower head failure with two- and three-dimensional finite element models. In particular, we aim to give clear insight regarding the effect of the three-dimensionality present in the distribution of the thickness and thermal load of the lower head. For a rigorous validation of the result, both the OLHF-1 and the OLHF-2 tests are considered in this study. The result suggests that the three-dimensional effect is not negligible as far as the failure location is concerned. The non-uniformity of the thickness distribution is found to affect the failure location and time. The thermal load, which may not be axisymmetric in general, has the most significant effect on the failure assessment. We also observe that the creep property can affect the global deformation of the lower head, depending on the applied mechanical load.