• Title/Summary/Keyword: Transient model analysis

Search Result 971, Processing Time 0.027 seconds

Simplified Technique for 3-Dimensional Core T/H Model in CANDU6 Transient Simulation

  • Lim, J.C.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.113-116
    • /
    • 1995
  • Simplified approach has been adopted for the prediction of the thermal behavior of CANDU reactor core during power transients. Based on the assumption that the ratio of mass flow rate for each core channel does not vary during the transient, quasy-steady state analysis technique is applied with predicted core inlet boundary conditions(total mass flow rate and specific enthalpy). For restricted transient case, the presented method shows functionally reasonable estimation of core thermal behavior which could be implemented in the fast running reactor simulation program.

  • PDF

PCCS Analysis Model for the Passively Cooled Steel Containment

  • Hwang, Y.D.;Chung, B.D.;Cho, B.H.;Chang, M.H.;Jeong, Ik
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.26-39
    • /
    • 1998
  • The containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5 is modified to incorporate the passive containment cooling models. The correlations are selected from the existing experimental heat transfer correlations to model the natural and mixed convection in annular space between the containment shell and the shield building. The evaporative heat transfer of the water film on the outer shell of the containment is modeled using the correlations derived from the analogy between the heat and mass transfer. The modified code is applied to the Ap600 containment transient analysis for the model verification and the results are compared to the results of GOTHIC calculation done by Westinghouse. Also, d series of parametric sensitivity studies of heat transfer correlations, water film ratio and delay time of the wet cooling on the containment peak pressure and temperature following LOCA are performed for the containment of 1000MWe passive plant, KP1000.

  • PDF

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

The analysis of the shift transient characteristics for the Ravigneaux type automatic transmission (라비뇨방식 유성기어를 채택한 자동변속기의 변속과도특성 해석)

  • Kim, I.C;Yi, S.J
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1943-1949
    • /
    • 1997
  • In this paper, the analysis of the shift transient characteristics for the Ravigneaux type automatic transmission has been carried out using dynamic models of the automatic trnasmission. It is necessary to understand the overall system including multi-plate clutch, band brake, one way clutch, and planetary gears. The equations of motion are derived from the dynamic models of the automatic transmission. The GUI computer simulation program has been developed to analyze the shift transient characteristics of the vehicle equipped with the Ravigneaux type automatic transmission.

Flamelet Analysis for Transient Response to Pressure Oscillations (압력섭동에 따른 비정상 화염편 응답특성 해석)

  • Bae, Jun-Kyung;Kim, Yong-Mo;Kim, Seong-Ku
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • This study has been mainly motivated to numerically investigate the transient flame response to pressure oscillations in the gaseous hydrogen - liquid oxygen flames at supercritical pressures. The present analysis is based on the real-fluid transient flamlet model and the flame field is acoustically perturbed only by the sinewave oscillations in the frequency range from 1,000 Hz to 5,000 Hz. Based on numerical results, the detailed discussions are made for the flame response characteristics and the transient flamelet response associated with the high-frequency combustion instability in the liquid propellant rocket engines.

Improvement of the Startup Transient Analysis on the Liquid Rocket Engine Using the TP+GG Coupled Test Result (터보펌프+가스발생기 연계시험 결과를 이용한 액체로켓엔진 시동 과정에 대한 해석 방법의 개선)

  • Park, Soon-Young;Cho, Won-Kook;Moon, Yoon-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.821-826
    • /
    • 2011
  • The turbopump+gas generator (TP+GG) coupled test for the liquid rocket engine development was performed. By comparing the results of a engine startup transient analysis with this test results, the verification of the analysis model was performed. From this, as to the analysis of the engine startup, the method calculating the pressure ratio of the turbine during the initial stage of startup was improved. And a fact that the transient heat transfer phenomenon between the working fluid and the solid parts of turbine effects to the calculation of turbine pressure ratio and consequentially to the startup analysis was revealed.

  • PDF

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Kim, Dong-Hyun;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

A New NDT Technique on Tunnel Concrete Lining (터널 콘크리트 라이닝의 새로운 비파괴 검사기법)

  • 이인모;전일수;조계춘;이주공
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.249-256
    • /
    • 2003
  • To investigate the safety and stability of the concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing method of NDT techniques has based on the Fourier analysis. However, the application of Fourier analysis to analyze recorded signal shows results only in frequency domain, it is not enough to analyze transient waves precisely. In this study, a new NDT technique .using the wavelet theory was employed for the analysis of non-stationary wave propagation induced by mechanical impact in the concrete lining. The wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of wavelet transform as a time- frequency analysis tool, model experiments have been conducted on the concrete lining model. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was concluded that Wavelet transform was an effective tool for the experimental analysis of dispersive waves in concrete structures.

  • PDF