• Title/Summary/Keyword: Transient method

Search Result 2,572, Processing Time 0.029 seconds

Effects of Testosterone on Carbonic Anhydrase Inhibiting Action of Acetazolamide (Acetazolamide 의 Carbonic Anhydrase 활성 억제 작용에 대한 Testosterone 의 영향)

  • Chang, Dong-Won;Lee, Sang-Bok;Cho, Kyu-Chul
    • The Korean Journal of Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 1975
  • This study was carried out to observe the effect of testosterone on carbonic anhydrase inhibiting action of acetazolamide. Carbonic anhydrase activities in the kidneys of mice were measured by Philpot and Philpot method(1936) at 30, 90 and 150 minutes after intravenous administration of saline(0.5 ml/10 g) or acetazolamide (0.25 mg/10 g) in mice pretreated with testosterone (0.1 mg/10 g). The changes in volume and pH of urine as well as those in urinary electrolytes, such as $Na^+,\;K^+\;and\;Cl^-$ were measured at 15 minutes interval for 150 minutes in the rabbit pretreated with double administrations of testosterone(10 mg/kg), 1 hour and 18 hours, prior to the administration of acetazolamide (10 mg/kg). The results were as follows: 1. Carbonic anhydrase activities in the kidneys of mice of testosterone-pretreated groups were significantly higher than those of acetazolamide-treated group at 30 minutes. No significant changes of carbonic anhydrase activities were observed in testosterone-pretreated groups compared with saline-treated groups. 2. Combined administrations of acetazolamide and testosterone exhibited higher carbonic anhydrase activity than those group of acetazolamide alone in the kidney of mice through observed period of 150 minutes. 3. There were no significant changes in the excretion rate of urine and urinary electrolytes in the group of rabbits with testosterone administerone alone. Urine volume as well as $Na^+\;and\;Cl^-$ excretion rates in the combined treated group of acetazolamide and testosterone were significantly lower than that of acetazolamide group throughout experimental period except 15 minutes after drug administration at the time transient increase was shown. 4. Generally lower $K^+$ excretion rate was observed in the combined treated group of acetazolamide and testosterone compared with the single acetazolamide-treated group and the testosterone-pretreated group shows lowest excretion rate of potassium.

  • PDF

Effects of Noradrenaline on the Membrane Potential of Prostatic Neuroendocrine Cells of Rat

  • Kim, Jun-Hee;Shin, Sun-Young;Uhm, Dae-Yong;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 2003
  • The prostate gland contains numerous neuroendocrine cells that are believed to influence the function of the prostate gland. Our recent study demonstrated the expression of both ${\alpha}1$- and ${\alpha}2$-ARs, signaling the release of stored $Ca^{2+}$ and the inhibition of N-type $Ca^{2+}$ channels, respectively, in rat prostate neuroendocrine cells (RPNECs). In this study, the effects of NA on the resting membrane potential (RMP) of RPNECs were investigated using a whole-cell patch clamp method. Fresh RPNECs were dissociated from the ventral lobe of rat prostate and identified from its characteristic shape; round or oval shape with dark cytoplasm. Under zero-current clamp conditions with KCl pipette solution, the resting membrane potential (RMP) of RPNECs was between -35 mV and -85 mV. In those RPNECs with relatively hyperpolarized RMP (<-60 mV), the application of noradrenaline (NA, $1{\mu}M$) depolarized the membrane to around -40 mV. In contrast, the RPNECs with relatively depolarized RMP (>-45 mV) showed a transient hyperpolarization and subsequent fluctuation at around -40 mV on application of NA. Under voltage clamp conditions (holding voltage, -40 mV) with CsCl pipette solution, NA evoked a slight inward current (<-20 pA). NA induced a sharp increase of cytosolic $Ca^{2+}$ concentration ($[Ca^{2+}]_c$), measured by the fura-2 fluorescence, and the voltage clamp study showed the presence of charybdotoxin-sensitive $Ca^{2+}$-activated $K^+$ currents. In summary, adrenergic stimulation induced either depolarization or hyperpolarization of RPNECs, depending on the initial level of RMP. The inward current evoked by NA and the $Ca^{2+}$-activated $K^+$ current might partly explain the depolarization and hyperpolarization, respectively.

Brain Delivery of $^{99m}Tc$-Diethylene Triamine Pentaacetic Acid and Phenytoin by Transient Osmotic Opening Method in Rats (흰쥐에서 삼투개열법에 의한 $^{99m}Tc$-Diethylene Triamine Pentaacetic Acid 및 페니토인의 뇌로의 송달)

  • Hwang, Man-Yong;Park, Kyoung-Ho;Lee, Min-Hwa
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.196-204
    • /
    • 1998
  • The blood-brain barrier (BBB) of rats was modificated opening reversibly by infusing a hyperosmotic solution of arabinose (1.6 molal) into the right external carotid artery. Pre vious studies demonstrated that permeability was increased maxmmally in the first 15 min and remained slightly elevated at 1 hr. As control reference, saline was used. In the present study, to evaluate the effects of osmotic BBB opening on the BBB trasport according to hydrophilic or hydrophobic characteristics of drugs. And the differences of the uptakes of these compounds to right (treated osmotic opening) and left (untreated) hemispheres in same rats were compared each other following injection of 8 mCi per rat of $^{99m}Tc$-ethylene triamine pentaacetic acid (DTPA) as hydrophilic drug or 5mg/kg of phenytoin as hydrophobic drug mto the right external carotid artery of rats between two groups (1.6 molal arabinose vs saline). The uptakes of $^{99m}Tc$-DTPA and phenytoin in the right cerebral hemispheres were increased to about thirty three times and twice rather than those in the left cerebral heimspheres, respectively. And PAs (permeability X capillary surface area) were also increased from a control mean of 2.11${\times}10^{-4}$ (Untreated) to 6.98${\times}10^{-3}\;sec^{-1}$ (treated osmotic opening for $^{99m}Tc$-DTPA and 0.29 to 0.17 $sec^{-1}$ for phenytoin, respectively. From the results of present study, it is noted that osmotic opening of BBB is more effective in the brain delivery of hydrophilic drugs rather than that of hydrophobic drugs.

  • PDF

"COVID-19 : Our Memory" : A Digital Archive for Social Changes caused by SARS-CoV-2 ("코로나-19 : 우리의 기억" : 코로나바이러스 감염증과 사회변화에 대한 디지털 아카이브)

  • Kim, Haklae
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.20 no.4
    • /
    • pp.229-236
    • /
    • 2020
  • In light of SARS-CoV-2's significant impact, human society has experienced rapid changes in lifestyle that it has not yet experienced before. One way this virus has influenced people's lives is the emergence of the zero-contact society, an initiative for preventing the spread of infectious diseases. As can be seen, the social impact of COVID-19 is widespread. Various issues, such as those about government policy, personal information protection, and health care, are affecting society as a whole. At the same time, factual information is difficult to track and record because of the rapid and transient nature of related events and issues. As such, a method of effectively describing COVID-19 and real-time information is necessary. The "COVID-19: Our Memory" project is an attempt to record the sociocultural impact of the coronavirus infection. This project collects major events and issues classified into several subjects, records those events from a neutral point of view, and develops a digital archive so that all records are accessible. All the data collected and built through the project, the application, including the source code and visualization, are all published to bring about new opportunities for collaboration.

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-61
    • /
    • 2006
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy nile as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.

A Numerical Simulation of Unsteady Axisymmetric Turbulent Flow in a Reciprocating Engine Including Port/Valve Assembly (축대칭 왕복엔진의 비정상 난류유동에 대한 수치해석)

  • 조진행;유홍선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-149
    • /
    • 1994
  • A numerical simulation of unsteady axisymmetric turbulent flow was performed for a reciprocating engine including port/valve assembly. The governing equations based on a nonorthogonal coordinate formulation with Cartesian velocity components were used and discretised by the finite volume method with non-staggered variable arrangements. The modified $\kappa-\xi$. turbulence model which included the effect of compressibility was used. The results of twodimensional transient calculation for the axisymmetric configuration were compared with the experimental data. Although slightly low rms velocity was predicted compared to the experimental data, predicted velocity distributions at the valve exit and in-cylinder region showed good agreements with the experimental data. The flow at the valve exit was separated at the same valve lift position with the experimental data. Two vortices incylinder region were generated during the initial intake process. The clockwise main vortex became strong and moved upward to the top wall. The counter-clockwise second vortex became weak and stick to the upper left corner of the cylinder. After middle intake process, new vortex adjacent to upper cylinder wall appeared by the piston motion and therefore, the in-cylinder flow was formed into three vortices. The cylinder pressure just before bottom dead center of piston was higher than inlet pressure and then the reverse flow occured at the valve exit. The in-cylinder flow characteristics were strongly dependent on piston motion, but insensitive to valve motion.

Analysis of the Bioheat Equation Considering Tissue Layers with Sinusoidal Temperature Oscillation on the Skin (사인 주기의 온도 변화가 가해지는 피부 조직의 생체열 방정식에 대한 해석)

  • Choi, Woo-Lim;Moon, Sang-Don;Youn, Suk-Bum;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.757-762
    • /
    • 2011
  • We investigate the transient temperature response in biological tissue whose surface is exposed to alternately varying sinusoidal oscillation. Based on the Pennes bio-heat equation, we apply numerical analysis using a finite element method to find the effects of the physical properties of the skin layers. Three layers of tissue-epidermis, dermis, and subcutaneous-are considered as the solution region. We investigate the effects of different properties of the skin layers on the temperature profile. We also investigate the effects of the perfusion rate for the dermis, which is the most sensitive layer. The results show that the temperature profile of tissue depth has a discontinuous point when different physical properties are used.

A Study on Effective Output Control Technique for Rotational Transmission Beam Drive of Sonar Transmitter (소나 송신기의 회전 송신빔 구동을 위한 효율적인 출력 제어 기법 연구)

  • Lee, Byung-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.280-287
    • /
    • 2012
  • This paper presents a study on the experimental analysis of the impedance characteristics according to the rotational direction of the transmission beam of a cylindrical sensor array. Besides, this suggests a real time control technique of the transmitter output for the effective maximum power transmission, in order to drive efficiently the rotational transmission beam of the active sonar transmitter. The output characteristics of the transmitter and the real-time impedance variations of the sensor array are analyzed under the overload conditions. They are caused by electric and acoustic boundary conditions when the rotational transmission beam is operated. From these results, a new output control method of the transmitter is proposed to protect the transmitter and its loads. It can maximize the output power without the transmission pause even if the transient phenomena occur. The proposed technique is verified from the experiment.

A Numerical Study of Flow Structure in Over-Expanded Rocket Nozzles

  • Yonezawa, Koichi;Yamashita, Yukinori;Tsujimoto, Yoshinobu;Watanabe, Yasuhide;Yokota, Kazuhiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.165-172
    • /
    • 2004
  • LE-7A is the main engine of the H-IIA launch vehicle. Under its development, the nozzle suffered from two troubles during startup and shutdown transients of the engine. One is a large side load, which damages the actuator of the nozzle, and the other is damage on regenerative cooling tubes due to high heat load. It has been considered that these problems are caused by a peculiar separation pattern called Restricted Shock Separation (RSS). RSS is observed in several rocket nozzles, for example, LE-7A nozzle, Vulcain nozzle and so on. Their contours are not conventional truncated perfect (TP) nozzle - LE-7A nozzle is a compressed truncated perfect (CTP) nozzle and Vulcain nozzle is a thrust optimized (TO) nozzle. Although it is believed that the occurrence of RSS is affected by the nozzle contour, the mechanisms are not clarified sufficiently yet. In the present paper, a parametric numerical study is carried out to investigate the mechanisms of the occurrence of RSS in CTP nozzles during startup transient. The results show that RSS is caused by the adverse pressure gradient downstream of the Mach disk. The adverse pressure gradient is caused by the interaction of the pressure wave and Mach disk. The method to avoid the occurrence of RSS is also examined. A small step inside the nozzle affects the position of the separation point and prevents RSS. The result shows that the possibility that RSS can be suppressed by controlling the position of the separation point.

  • PDF