• 제목/요약/키워드: Transient estimation technique

검색결과 40건 처리시간 0.042초

FIR 필터를 이용한 전력계통의 주파수 추정기법 (Estimation Technique of Frequency using FIR Filter in the Power System)

  • 남시복;박철원;신명철
    • 전기학회논문지P
    • /
    • 제50권3호
    • /
    • pp.101-108
    • /
    • 2001
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the Power system energy balance. This paper describes a digital signal processing technique for measuring the operating frequency of a power system. The fundamental frequency component of 3-phase signal is first extracted by using an algorithm based on FIR filter. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154KV double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

Simplified Technique for 3-Dimensional Core T/H Model in CANDU6 Transient Simulation

  • Lim, J.C.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1995년도 춘계학술발표회 초록집
    • /
    • pp.113-116
    • /
    • 1995
  • Simplified approach has been adopted for the prediction of the thermal behavior of CANDU reactor core during power transients. Based on the assumption that the ratio of mass flow rate for each core channel does not vary during the transient, quasy-steady state analysis technique is applied with predicted core inlet boundary conditions(total mass flow rate and specific enthalpy). For restricted transient case, the presented method shows functionally reasonable estimation of core thermal behavior which could be implemented in the fast running reactor simulation program.

  • PDF

FIR 필터를 이용한 전력계통 주파수 추정기법에 관한 연구 (A Study on the Estimation Technique of Frequency in the Power System using FIR Filter)

  • 남시복;이훈구;박철원;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.80-85
    • /
    • 2001
  • Frequency is an important operating parameter of a power system. Frequency of a power system remains constant if sum of all the loads plus losses equals total generation in the system. However, the frequency starts to decrease if total generation is less than the sum of loads and tosses. On the other hand, the system frequency increases if total generation exceeds the sum of loads and losses. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. The fundamental frequency component of 3-phase signal is first extracted by using an algorithm based on FIR(finite duration impulse response) filter, a phase angle of a voltage. The rate change of the phase angle is used for estimation and speed in its process. Also, to confirm the validity of the proposed algorithm, the simulation results obtained by using EMTP(electro magnetic transients program) are shown.

  • PDF

전력설비의 정밀주파수진단을 위한 기법 (A Technique for Accurate Measurement of Power System Frequency)

  • 남시복;이훈구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.66-70
    • /
    • 2006
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, il requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

전력계통 주파수의 고속.정밀측정을 위한 기법 (A Technique for Fast and Accurate Measurement of Power System Frequency)

  • 남시복;이훈구;마석범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.68-71
    • /
    • 2004
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

전력계통 주파수의 고속.정밀측정을 위한 반복기법 (An Iterative Technique for Fast and Accurate Measurement of Power System Frequency)

  • 남시복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.92-95
    • /
    • 2003
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints. it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

전력계통 주파수의 고속측정을 위한 기법 (A Technique for Fast Measurement of Power System Frequency)

  • 남시복;김진수;마석범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.145-149
    • /
    • 2005
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

MATLAB을 이용한 송전선로의 아크사고 검출 및 고장거리 추정 소프트웨어 개발에 관한 연구 (A Study on the Defection of Arcing Faults in Transmission Lines and Development of Fault Distance Estimation Software using MATLAB)

  • 김병천;박남옥;김동수;김길환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권4호
    • /
    • pp.163-168
    • /
    • 2002
  • This paper present a new verb efficient numerical algorithm for arcing faults detection and fault distance estimation in transmission line. It is based on the fundamental differential equations describing the transients on a transmission line before, during and alter the fault occurrence, and on the application of the "Least Error Squares Technique"for the unknown model parameter estimation. If the arc voltage estimated is a near zero, the fault is without arc, in other words the fault is permanent fault. If the arc voltage estimated has any high value, the faust is identified as an fault, or the transient fault. In permanent faults case, fault distance estimation is necessary. This paper uses the model of the arcing fault in transmission line using ZnO arrestor and resistance to be implemented within EMTP. One purpose of this study is to build a structure for modeling of arcing fault detection and fault distance estimation algorithm using Matlab programming. In this paper, This algorithm has been designed in Graphic user interface(GUI).

Radial Basis Function Neural Network for Power System Transient Energy Margin Estimation

  • Karami, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.468-475
    • /
    • 2008
  • This paper presents a method for estimating the transient stability status of the power system using radial basis function(RBF) neural network with a fast hybrid training approach. A normalized transient energy margin(${\Delta}V_n$) has been obtained by the potential energy boundary surface(PEBS) method along with a time-domain simulation technique, and is used as an output of the RBF neural network. The RBF neural network is then trained to map the operating conditions of the power system to the ${\Delta}V_n$, which provides a measure of the transient stability of the power system. The proposed approach has been successfully applied to the 10-machine 39-bus New England test system, and the results are given.

Estimation of the Separate Primary and Secondary Leakage Inductances of a Y-Δ Transformer Using Least Squares Method

  • Kang, Yong-Cheol;Lee, Byung-Eun;Hwang, Tae-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.538-544
    • /
    • 2010
  • This paper proposes an estimation algorithm for the separate primary and secondary leakage inductances of a three phase $Y-\Delta$ transformer using least squares method. The voltage equations from the primary and secondary windings are combined into a differential equation to estimate the separate primary and secondary leakage inductances in order to use the line current of the delta winding. Separate primary and secondary leakage inductances are obtained by applying least squares method to the differential equation. The performance of the proposed algorithm is validated under transient states, such as magnetic inrush and overexcitation, as well as in the steady state with various cut-off frequencies of low-pass filter. The proposed technique can accurately generate separate leakage inductances both in the steady and transient states.