• Title/Summary/Keyword: Transient effects

Search Result 1,111, Processing Time 0.026 seconds

Transient Vibration Analysis of an Agricultural Tractor (농업용 트랙터의 과도 진동 분석)

  • 김용준;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.509-516
    • /
    • 2001
  • This paper introduced some advantages of the time-frequency analysis of vibration and investigated, using the time-frequency transform, the characteristics of the transient motion of a tractor seat, which occurred during the tractor traversed over a rectangular obstacle on the flat surface. The characteristics of the short-time courier and wavelet transforms as time-frequency analysis methods were introduced and discussed to figure out which is more suitable to the analysis of the transient motions of agricultural tractors. Using each transform, transient vibration of a tractor seat was analyzed. Results of the analysis showed that the transient vibration of the seat was influenced by the natural frequencies of vertical mode of chassis, pitching mode of engine and pitching mode of cab of the tractor. The time sequence of the natural mode of tractor vibration was also revealed by the time-frequency analysis. The vibration path analysis by the time-frequency transform showed that the vibration energies transmitted from the front mounts to the seat were less than those from the rear mounts. The energy reduction ratios between the cab mounts and seat were also estimated to be about 72∼78%. The front mounts showed larger reduction than the rear mounts. However, the reduction difference between the right and left sides mounts was negligibly small. The short time Fourier transform was found to be a proper method for investigating the transient motions of farm machines and their effects on the ride vibration.

  • PDF

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

Numerical analysis of a long-span bridge response to tornado-like winds

  • Hao, Jianming;Wu, Teng
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.459-472
    • /
    • 2020
  • This study focused on the non-synoptic, tornado-like wind-induced effects on flexible horizontal structures that are extremely sensitive to winds. More specifically, the nonuniform, intensive vertical wind-velocity and transient natures of tornado events and their effects on the global behavior of a long-span bridge were investigated. In addition to the static part in the modeling of tornado-like wind-induced loads, the motion-induced effects were modeled using the semi-empirical model with a two-dimensional (2-D) indicial response function. Both nonlinear wind-induced static analysis and linear aeroelastic analysis in the time domain were conducted based on a 3-D finite-element model to investigate the bridge performance under the most unfavorable tornado pattern considering wind-structure interactions. The results from the present study highlighted the important effects due to abovementioned tornado natures (i.e., nonuniform, intensive vertical wind-velocity and transient features) on the long-span bridge, and hence may facilitate more appropriate wind design of flexible horizontal structures in the tornado-prone areas.

Application of Newton's Approach for Transient Stability Improvement by Using Generation Rescheduling (발전력 재배분을 이용하여 과도안정도를 향상하기 위한 Newton's Approach 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • This paper presents a scheme to improve transient stability using Newton's Approach for generation rescheduling. For a given contingency, the energy margin and sensitivities are computed. The bigger energy margin sensitivity of generator is, the more the generation of the generator effects to the transient stability. According to energy margin sensitivity, the control variables of generation rescheduling are selected. The fuel cost function is used as objective function to reallocate power generation. The results are compared to the results of time simulation to show its the effectiveness.

Exofocal Damage to the Substantia Nigra by Transient Middle Cerebral Artery Occlusion in Rats

  • Jin, Changbae;Yanai, Kazuhiko;Araki, Tsutomu;Watanabe, Takehiko
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.215-215
    • /
    • 1996
  • The present study examined chronic effects of transient focal cerebral ischemia on the substantia nigra, a remote exofocal area, using immunohistochenmical and receptor autoradiographic techniques. Transient focal cerebral ischemia was induced by middle cerebral artery (MCA) occlusion for 60 or 90 min followed by reperfusion using silicone-coated 4-0 nylon monofilament in male Wistar rats. After 1- or 2-week reperfusion following transient MCA occlusion, there were partial losses of tyrosine hydroxylase-immunoreactive dopaminergic neurons, incieases in glial fibrillary acidic protein-immunoreactive cells (gliosis), decreases in [$^3$H]YM-09151-2 binding for dopamine D$_2$ receptors, and marked atrophy in the ipsilateral substantia nigra. The precise mechanism(s) of exofocal damage to the substantia nigra is remained to be elucidated.

  • PDF

The Study of Transient Radiation Effects on Commercial Electronic Devices (즉발감마선에 의한 상용전자소자의 피해현상분석 연구)

  • Oh, Seugn-Chan;Lee, Nam-Ho;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1448-1453
    • /
    • 2012
  • In this study, we carried out transient radiation test for identify failure situation by a transient radiation effect on operational amplifier devices. This experiments were carried out using a 60 MeV electron beam pulse of the LINAC(Linear Accelerator) facility in the Pohang Accelerator Laboratory. In this test, we has found that a serious failure as a burn-out effect due to overcurrent on the partial electronic devices.

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

Flamelet Analysis for Transient Response to Pressure Oscillations (압력섭동에 따른 비정상 화염편 응답특성 해석)

  • Bae, Jun-Kyung;Kim, Yong-Mo;Kim, Seong-Ku
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • This study has been mainly motivated to numerically investigate the transient flame response to pressure oscillations in the gaseous hydrogen - liquid oxygen flames at supercritical pressures. The present analysis is based on the real-fluid transient flamlet model and the flame field is acoustically perturbed only by the sinewave oscillations in the frequency range from 1,000 Hz to 5,000 Hz. Based on numerical results, the detailed discussions are made for the flame response characteristics and the transient flamelet response associated with the high-frequency combustion instability in the liquid propellant rocket engines.

Transient filling simulations in unidirectional fibrous porous media

  • Liu, Hai Long;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • The incomplete saturation and the void formation during the resin infiltration into fibrous porous media in the resin transfer molding process cause failure in the final product during its service. In order to better understand flow behavior during the filling process, a finite-element scheme for transient flow simulation across the micro-structured fibrous media is developed in the present work. A volume-of- fluid (VOF) method has been incorporated in the Eulerian frame to capture the evolution of flow front and the vertical periodic boundary condition has been combined to avoid unwanted wall effect. In the microscale simulation, we investigated the transient filling process in various fiber structures and discussed the mechanism leading to the flow fingering in the case of random fiber distribution. Effects of the filling pressure, the shear-thinning behavior of fluid and the volume fraction on the flow front have been investigated for both intra-tow and the inter-tow flows in dual-scale fiber tow models.