• Title/Summary/Keyword: Transient Circuit Theory

Search Result 12, Processing Time 0.02 seconds

Evaluation Method II of the Small Current Breaking Performance of SF$_6$-Blown High-Voltage Gas Circuit Breakers (초고압 $SF_6$가스차단기의 소전류 차단성능 해석기술 II)

  • 송기동;이병윤;박경엽;박정후
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.384-391
    • /
    • 2001
  • The insulation strength between contacts after current interruption to the transient recovery voltage i.e., the dielectric recovery strength should be estimated for the evaluation of the small capacitive current interruption capability. Many authors have used theoretical and semi-experimental approaches to evaluate the transient breakdown voltage after the current interruption. Moreover, an empirical equation, which is obtained from a series of tests, has been used to estimated the dielectric recovery strength. Un this paper, the theoretical method which is generated from the streamer theory has been applied to real circuit breakers in order to evaluated the interruption capability. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory

  • Shim, Hyunjin;Nam, Sangwook;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.219-224
    • /
    • 2016
  • In this paper, coupled-mode theory (CMT) is used to obtain a transient solution analytically for a wireless power transfer system (WPTS) when unit energy is applied to one of two resonators. The solutions are compared with those obtained using equivalent circuit-based analysis. The time-domain CMT is accurate only when resonant coils are weakly coupled and have large quality factors, and the reason for this inaccuracy is outlined. Even though the time-domain CMT solution does not describe the WPTS behavior precisely, it is accurate enough to allow for an understanding of the mechanism of energy exchange between two resonators qualitatively. Based on the time-domain CMT solution, the critical coupling coefficient is derived and a criterion is suggested for distinguishing inductive coupling and magnetic resonance coupling of the WPTS.

The transient performance of a SLIM (SLIM의 과도특성)

  • Im, Dal-Ho;Jang, Seok-Myeong;Kim, Gyu-Tak;Yoon, Sang-Baek;Park, Seung-Chan;An, Ji-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.938-941
    • /
    • 1993
  • This paper treats of the transient electrical/mechanical performance characteristics of a Linear Induction Motor(LIM) by means of complex space vector and equivalent circuit theory. Consequently, the methods for the decision of optimum design parameter in power system and control unit is presented.

  • PDF

TRV analysis by using multi - port equivalent (다 단자망 축약 이론을 이용한 TRV 해석)

  • Yoon, Jae-Young;Moon, Young-Hyun;Park, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.236-240
    • /
    • 1988
  • The simplified equivalent by using the short circuit impedance has been used for analyzing the prospective transient recovery voltage of the large power system. But it sometimes generates untorelable error in the rate-of-rise of TRV when using the Thevenin equivalent source. This paper provides the new equivalent by using the multi-port theory. The application of the new method to the sample system gives satisfactory accuracy compared with the short-circuit equivalent.

  • PDF

An Analytical Transient Model for NPT IGBT

  • Ryu, Se-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.26-30
    • /
    • 2001
  • In this paper, transient characteristics of IGBT has been analytically solved to express the excess minority carrier distribution in active base region and the output voltage. Non-Punch Through(NPT) structure has been selected to prove the validity of the model. It is based on the equivalent circuit of MOSFET which supplies a low gain and a high level injection to the base of BJT. None of the quasi static conditions have been assumed to trace the transient characteristics. The basic elements of the model have been derived from the ambipolar transport theory. Theoretical predictions of the output voltages have been obtained with different lifetimes and compared with experimental and theoretical results available in the literature. From the analytical approach, good agreement has been obtained to provide reliable and fast output of the device.

  • PDF

Formation of System Matrix for analyzing Magnetic Equivalent Circuit of Induction Motor (유도전동기의 자기등가회로 해석을 위한 시스템 매트릭스 구성)

  • Choi, Jae-Young;Lee, Eun-Woong;Jeong, Jong-Ho;Kim, Sung-Jong;Woo, Sung-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.330-332
    • /
    • 2000
  • To analyze the transient state of an induction motor, there have been studies for using the magnetic equivalent circuit method(MECD) instead of the time differential finite-element method. MECD which analyzes magnetic equivalent circuits after converting each part of an electric machine into the magnetic circuit elements, has the merits of short calculation-time and comparatively accurate results. To analyze an electric machine with MECM, we have to replace stator and rotor with the magnetic elements and express the air gap, where electromechanical energy conversion takes place, with the permeance. So in this study, to analyze an Induction Motor with HECM, we express the magnetic equivalent circuit as algebraic equations and then as the matrix for solving easily them. In particular, all relations are formed with matrixes to solve Mathematically them in the programming process later. As a result, this theory will be the basis on the static and dynamic analysis of an Induction Motor.

  • PDF

Optimized Design Technique of a Differential Pair Having 2 Drop Configuration through Impedance Analysis (2 Drop 구조를 가지는 Differential Pair의 Impedance 해석 및 설계 방안)

  • Bae, Min-Ji;Kim, Yoon-Jung;Choi, Ung;Yang, Kook-Bo;Kim, Young-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.193-199
    • /
    • 2009
  • In this paper, impedance analysis of a differential pall having 2 drop configuration is performed using the reflection theory and verified by circuit simulator (Ansoft designer). Through the impedance analysis, it was possible to understand the signal transmission at a differential pall, and an optimized 2 drop design technique of a differential pair could be developed. When compared with the conventional design, the proposed design shows a good signal integrity and has much less design restrictions.

Improvement of PLL Method for Voltage Control of Dynamic Voltage Restorer (동적전압보상기의 전압제어를 위한 PLL 방식의 개선)

  • Kim, Byong-Seob;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.936-943
    • /
    • 2009
  • Dynamic voltage restorer(DVR) is now more preferable enhancement than other power quality enhancement in industry to reduce the impact of voltage faults, especially voltage sags to sensitive loads. The main controllers for DVR consists of PLL(phase locked loop), compensation voltage calculator and voltage compensator. PLL detects the voltage faults and phase. Compensation voltage calculator calculates the reference voltage from the source voltage and phase. With calculated compensation voltage from PLL, voltage compensator restores the source voltage. If PLL detect ideal phase, compensation voltage calculator calculates ideal compensation voltage. Therefore, PLL for DVR is very important. This paper proposes the new method of PLL in DVR. First, the power circuit of DVR system is analyzed in order to compensate the voltage sags. Based on the analysis, new PLL for improving transient response of DVR is proposed. The proposed method uses band rejection filter(BRF) at q-axis in synchronous flame. In order to calculate compensation voltage in commercial instruments, the PQR theory is used. Proposed PLL method is demonstrated through simulation using Matlab-Simulink and experiment, and by checking load voltage, confirms operation of the DVR

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

Transient Response Improvement at Startup of Three Phase AC/DC Converter for DC Distribution System in Building Applications (빌딩용 직류배전 시스템의 3상 AC/DC 컨버터의 기동 시 과도상태 응답 개선)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Lee, Jung-Hyo;Na, Jong-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.138-144
    • /
    • 2013
  • Most of the DC loads have had the sensitive characteristics electrically for input voltage. In this system, power converter is operated after connecting with DC loads to minimize the overshoot of the control voltage that may occur during connection of the loads. But whenever starting the power converter, parameters in circuit are different because power converter has been connected with diverse load types at each startup time. This is cause of a disadvantage to PI controller design of power converter. In this paper, the novel voltage control method using sliding mode control theory has proposed. This control method minimizes the overshoot of control voltage at startup of power converter. Despite the variations of the system parameters, the proposed voltage controller has fast response and robustness characteristics such as PI and sliding mode controllers. The proposed controller was applied to the three-phase AC/DC converter and each performance of controller was verified.