• Title/Summary/Keyword: Transient Characteristics

Search Result 1,791, Processing Time 0.032 seconds

Analysis on the estimating of fishery resources using hydro-acoustics (수산음향자원량 추정에 필요한 음향자료 분석 방안)

  • PARK, Geunchang;HAN, Inseong;OH, Wooseok;OH, Sunyoung;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.223-229
    • /
    • 2022
  • This study investigated the methods of effectively removing noises in the acoustic data collected from the cold water zone of the East Sea, and converted that data into NASC values for comparison and analysis. First, the noises accompanying the acoustic data were divided into background noise, impulse noise, transient noise and attenuated signals according to the pattern characteristics. Then, the NASC values before and after noise removal were compared. As a result, the background noises were found to show the highest difference of 6,946 times in the NASC values before and after removal. The attenuated signals showed that the NASC values were higher after the removal.

A Study on The Characteristics of Heat Pump Heating System Utilizing Heat Storage Tank (축열수조를 이용하는 열펌프식 난방의 특성에 관한 연구)

  • Kim H.K.;Lee G.Y.;Park M.S.;Hwang I.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.392-405
    • /
    • 1987
  • A study of appling solar assisted heat pump heating system to Korean climatic charac-teritics has been undertaken through computer simulation using TRNSYS (A Transient System Simulation Program). It is insufficient for heating system composed of each of solar and heat pump system to supply heat met with heating load. So SAHP (Solar Assisted Heat Pump) heating systems which combined solar system with heat pump system are analized using the standard weather data of Korea. And SAHP heating systems are categorized into the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. These combined system are better than each of solar and heat pump heating system in view of thermal performance, and parallel system is most effective among these combined systems.

  • PDF

Rotordynamic Analysis of Labyrinth Seal with Swirl Brake (스월 브레이크가 장착된 래버린스 씰의 동특성 해석)

  • Lee, Jeongin;Suh, Junho
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this research, the rotordynamic characteristics of the labyrinth seal with and without swirl brake were predicted using the computational fluid dynamic (CFD) model. Based on previous studies, a simple swirl brake consisting of square vanes without stagger angle is designed and placed in front of the seal inlet. The rotating frame of reference is utilized to consider the whirling motion of the rotor in the steady-state analysis since the whirling motion is transient behavior in nature. CFD analysis was performed in the range of -1 to 1 pre-swirl ratio for a given seal and swirl brake design and operating conditions. The CFD analysis result shows that the swirl brake effectively reduces the pre-swirl since the circumferential fluid velocity of labyrinth seal with swirl brake was lower than that without swirl brake. The cross-coupled stiffness coefficient, which is greatly affected by the circumferential fluid velocity, increased with an increasing pre-swirl ratio in a seal without a swirl brake but showed a low value in a seal with a swirl brake. The change in the damping coefficient was relatively small. The effective damping coefficient of the labyrinth seal with swirl brake was generally constant and showed a higher value than the labyrinth seal without swirl brake.

Modeling The Dynamics of Grit; Goal, Status, Effort & Stress (GSES)

  • Sangdon Lee;Jungho Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.10-29
    • /
    • 2023
  • Grit or perseverance as a factor for student success and life has gained increasing attention. Statistical methods have been the norm in analyzing various aspects of grit, but they do not address the transient and dynamic behavior well. We, for the first time, developed two linear dynamical models that specifically address the feedback structure of a child's desire to achieve a high grade point average (GPA) and the necessary effort that will increase stress between parents and a child. We call the dynamical model as GSES (Goal, Status, Effort & Stress). The two dynamical models incorporate the positive (i.e., achieving a high GPA) and the negative sides (i.e., effort and elevated stress and thus unhappiness) for being gritty or perseverant. Different types of parenting style and a child's characteristics were simulated whether parents and a child are empathetic or stubborn to their expectations and stress (i.e., willing or unwilling to change). Simulations show that when both parents and a child are empathetic to each other's expectation and stress, the most stable situations with minimal stress and effort occur. When a stubborn parent's and a stubborn child were studied together, this resulted in the highest elevation of stress and effort. Stubborn parents and a complying or empathetic child resulted in considerably high stress to a child. Interference from parents may unexpectedly result in a situation in which a child's stress is seriously elevated. The GSES model shows the U-shaped happiness curve (i.e., reciprocal of stress) caused by the increasing and then decreasing goal

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

SIMMER-IV application to safety assessment of severe accident in a small SFR

  • H. Tagami;Y. Tobita
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.873-879
    • /
    • 2024
  • A sodium-cooled fast reactor (SFR) core has a potential of prompt criticality due to a change of core material distribution during a severe accident, and the resultant energy release has been one of the safety issues of SFRs. In this study, the safety assessment of an unprotected loss-of-flow (ULOF) in a small SFR (SSFR) has been performed using the SIMMER-IV computer code, which couples the models of space- and time-dependent neutronics and multi-component, multi-field thermal hydraulics in three dimensions. The code, therefore, is applicable to the simulations of transient behaviors of extended disrupted core material motion and its reactivity effects during the transition phase (TP) of ULOF, including a potential of prompt-criticality power excursions driven by fuel compaction. Several conservative assumptions are used in the TP analysis by SIMMER-IV. It was found out that one of the important mechanisms that drives the reactivity-inserting fuel motion was sodium vapor pressure resulted from a fuel-coolant interaction (FCI), which itself was non-energetic local phenomenon. The uncertainties relating to FCI is also evaluated in much conservative way in the sensitivity analysis. From this study, the ULOF characteristics in an SSFR have been understood. Occurrence of recriticality events under conservative assumptions are plausible, but their energy releases are limited.

Economic optimization and dynamic analysis of nanocomposite shell conveying viscous fluid exposed to the moving load based on DQ-IQ method

  • Ali Chen;Omidreza Masoudian;Gholamreza Soleimani Jafari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.567-581
    • /
    • 2024
  • In this paper, an effort is made to present a detailed analysis of dynamic behavior of functionally graded carbon nanotube-reinforced pipes under the influence of an accelerating moving load. Again, the material properties of the nanocomposite pipe will be determined by following the rule of mixtures, considering a specific distribution and volume fraction of CNTs within the pipe. In the present study, temperature-dependent material properties have been considered. The Navier-Stokes equations are used to determine the radial force developed by the viscous fluid. The structural analysis has been carried out based on Reddy's higher-order shear deformation shell theory. The equations of motion are derived using Hamilton's principle. The resulting differential equations are solved using the Differential Quadrature and Integral Quadrature methods, while the dynamic responses are computed with the use of Newmark's time integration scheme. These are many parameters, ranging from those connected with boundary conditions to nanotube geometrical characteristics, velocity, and acceleration of the moving load, and, last but not least, volume fraction and distribution pattern of CNTs. The results indicate that any increase in the volume fraction of CNTs will lead to a decrease in the transient deflection of the structure. It is also observed that maximum displacement occurs with an increase in the load speed, slightly delayed compared to decelerating motion.

A Pattern Recognition Method of Fatigue Crack Growth on Metal using Acoustic Emission (음향방출을 이용한 금속의 피로 균열성장 패턴인식 기법)

  • Lee, Soo-Ill;Lee, Jong-Seok;Min, Hwang-Ki;Park, Cheol-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.125-137
    • /
    • 2009
  • Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems used in service. For reliable fault monitoring related to the crack growth, it is important to identify the dynamical characteristics as well as transient crack-related signals. Widely used methods which are based on physical phenomena of the three damage stages for detecting the crack growth have a problem that crack-related acoustic emission activities overlap in time, therefore it is insufficient to estimate the exact crack growth time. The proposed pattern recognition method uses the dynamical characteristics of acoustic emission as inputs for minimizing false alarms and miss alarms and performs the temporal clustering to estimate the crack growth time accurately. Experimental results show that the proposed method is effective for practical use because of its robustness to changes of acoustic emission caused by changes of pressure levels.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF